
1

1.0 INTRODUCTION

Performance—responsiveness and scalability—is a
make-or-break quality for software. Software perfor-
mance engineering (SPE) [Smith and Williams 2002],
[Smith 1990] provides a systematic, quantitative
approach to constructing software systems that meet
performance objectives. With SPE, you detect prob-
lems early in development, and use quantitative meth-
ods to support cost-benefit analysis of hardware
solutions versus software requirements or design solu-
tions, or a combination of software and hardware solu-
tions.

SPE is a software-oriented approach; it focuses on
architecture, design, and implementation choices. It
uses model predictions to evaluate trade-offs in soft-
ware functions, hardware size, quality of results, and
resource requirements. The models assist developers
in controlling resource requirements by enabling them
to select architecture and design alternatives with
acceptable performance characteristics. The models
aid in tracking performance throughout the develop-
ment process and prevent problems from surfacing late
in the life cycle (typically during final testing).

SPE also prescribes principles and performance pat-
terns for creating responsive software, performance
antipatterns for recognizing and correcting common
problems, the data required for evaluation, procedures
for obtaining performance specifications, and guide-
lines for the types of evaluation to be conducted at

each development stage. It incorporates models for
representing and predicting performance as well as a
set of analysis methods.

This paper presents 24 “best practices” for SPE in four
categories: project management, performance model-
ing, performance measurement, and techniques. A
best practice is:

“a process, technique, or innovative use of technol-
ogy, equipment or resources that has a proven
record of success in providing significant improve-
ment in cost, schedule, quality, performance, safety,
environment, or other measurable factors which
impact an organization.” [Javelin 2002]

The best practices presented here are based on:
• observations of companies that are successfully

applying SPE,
• interviews and discussions with practitioners in

those companies, and
• our own experience in applying SPE techniques

on a variety of consulting assignments.

Many of them can be found in the Performance Solu-
tions book [Smith and Williams 2002]. Ten of them
were presented in [Smith and Williams 2003a]. This
paper builds on the earlier paper, and puts them in the
four categories.

These best practices represent documented strategies
and tactics employed by highly admired companies to
manage software performance. They have imple-

Best Practices for Software Performance Engineering

Performance—responsiveness and scalability—is a make-or-break quality for software.
Software Performance Engineering (SPE) provides a systematic, quantitative approach to
constructing software systems that meet performance objectives.It prescribes ways to
build performance into new systems rather than try to fix them later. Many companies suc-
cessfully apply SPE and they attest to the financial, quality, customer satisfaction and
other benefits of doing it right the first time.

This paper describes 24 best practices for applying SPE to proactively managing the per-
formance of new applications. They are vital for successful, proactive SPE efforts, and
they are among the practices of world-class SPE organizations. They will help you to
establish new SPE programs and fine tune existing efforts in line with practices used by
the best software development projects.

Connie U. Smith, Ph.D.
Performance Engineering Services

PO Box 2640
Santa Fe, New Mexico, 87504-2640

(505) 988-3811
http://www.perfeng.com/

Lloyd G. Williams, Ph.D.
Software Engineering Research

264 Ridgeview Lane
Boulder, Colorado 80302

(303) 938-9847
boulderlgw@aol.com

Copyright © 2003, Performance Engineering Services and Software Engineering Research. All rights reserved.

2

mented these practices and refined their use to place
themselves and their practitioners among the best in
the business for their ability to deliver software that
meets performance objectives and is on-time and
within budget.

2.0 PROJECT MANAGEMENT BEST PRACTICES

These are practices adopted by managers of software
development projects and/or managers of SPE special-
ists who work with development managers.

2.1 Perform An Early Estimate Of Performance
Risk

It is important to understand your level of performance
risk. A risk is anything that has the possibility of endan-
gering the success of the project. Risks include: the
use of new technologies, the ability of the architecture
to accommodate changes or evolution, market factors,
schedule, and others.

If failing to meet your performance goals would endan-
ger the success of your project, you have a perfor-
mance risk. If your project supports a critical business
function and/or will be deployed with high visibility
(such as a key, widely publicized web application), then
failing to meet performance objectives may result in a
business failure and you have an extreme performance
risk. Inexperienced developers, lack of familiarity with
the technology, a cutting-edge application, and aggres-
sive schedule all increase your risk of performance fail-
ure.

To assess the level of performance risk, begin by iden-
tifying potential risks. You will find an overview of soft-
ware risk assessment and control in [Boehm 1991].
Once you have identified potential risks, try to deter-
mine their impact. The impact of a risk has two compo-
nents: its probability of happening, and the severity of
the damage that would occur if it did. For example, if a
customer were unable to access a Web site within the
required time, the damage to the business might be
extreme. However, it may also be that the team has
implemented several similar systems, so the probability
of this happening might be very small. Thus, the impact
of this risk might be classified as moderate. If there are
multiple performance risks, ranking them according to
their anticipated impact will help you address them sys-
tematically.

2.2 Match The Level of SPE Effort To The
Performance Risk

SPE is a risk-driven process. The level of risk deter-
mines the amount of effort that you put into SPE activi-
ties. If the level of risk is small, the SPE effort can be
correspondingly small. If the risk is high, then a more
significant SPE effort is needed. For a low-risk project,

the amount of SPE effort required might be about 1%
of the total project budget. For high-risk projects, the
SPE effort might be as high as 10% of the project bud-
get.

2.3 Track SPE Costs And Benefits
Successful application of SPE is often invisible. If you
are successfully managing performance, you do not
have performance problems. Because of this, it is nec-
essary to continually justify your SPE efforts. In fact, we
have heard managers ask “Why do we have perfor-
mance engineers if we don’t have performance prob-
lems?”

It is important to track the costs and benefits of apply-
ing SPE so that you can document its financial value
and justify continued efforts. The costs of SPE include
salaries for performance specialists, tools, and support
equipment such as workstations for performance ana-
lysts or a dedicated performance testing facility. The
benefits are usually costs due to poor performance that
you reduce or avoid as a result of applying SPE. These
include: costs of refactoring or tuning, contractual pen-
alties, user support costs and lost revenue as well as
intangible costs such as damaged customer relations.

Once you have this information, it is easy to calculate
the return on investment (ROI) [Reifer 2002] for your
SPE efforts. The return on investment for SPE is typi-
cally more than high enough to justify its continued use
(see, for example, [Williams, et al. 2002] and [Williams
and Smith 2003b]).

2.4 Integrate SPE Into Your Software Development
Process and Project Schedule

To be effective, SPE should not be an “add-on;” it
should be an integral part of the way in which you
approach software development. Integrating SPE into
the software process avoids two problems that we
have seen repeatedly in our consulting practice. One is
over-reliance on individuals. When you rely on individu-
als to perform certain tasks instead of making them
part of the process, those tasks are frequently forgotten
when those individuals move to a different project or
leave the company.

The second reason for making SPE an integral part of
your software process is that many projects fall behind
schedule during development. Because performance
problems are not always apparent, managers or devel-
opers may be tempted to omit SPE studies in favor of
meeting milestones. If SPE milestones are defined and
enforced, it is more difficult to omit them.

3

2.5 Establish Precise, Quantitative Performance
Objectives And Hold Developers and Managers
Accountable For Meeting Them

Precise, quantitative performance objectives help you
to control performance by explicitly stating the required
performance in a format that is rigorous enough so that
you can quantitatively determine whether the software
meets that objective. Well-defined performance objec-
tives also help you evaluate architectural and design
alternatives and trade-offs and select the best way of
meeting performance (and other quality) requirements.

It is important to define one or more performance
objectives for each performance scenario. Throughout
the modeling process, you can compare model results
to the objective, to determine if there is significant risk
of failing to meet the objectives, and take appropriate
action early. And, as soon as you can get measure-
ments from a performance test, you can determine
whether or not the software meets the objective.

A well-defined performance objective would be some-
thing like: “The end-to-end time for completion of a ‘typ-
ical’ correct ATM withdrawal performance scenario
must be less than 1 minute, and a screen result must
be presented to the user within 1 second of the user’s
input.” Vague statements such as “The system must be
efficient” or “The system shall be fast” are not useful as
performance objectives.

For some types of systems you may define different
performance objectives, depending on the intensity of
requests. For example, the response time objective for
a customer service application may be 1 second with
up to 500 users or less, 2 seconds for 500 to 750
users, and 3 seconds for up to 1,000 users.

Unless performance objectives are clearly defined, it is
unlikely that they will be met. In fact, establishing spe-
cific, quantitative, measurable performance objectives
is so central to the SPE process that we have made it
one of the performance principles [Smith and Williams
2002]. When a team is accountable for, and rewarded
for achieving their system’s performance, they are
more likely to manage it effectively. If the team is only
accountable for completion time and budget, there is
no incentive to spend time or money for performance.

2.6 Identify Critical Use Cases And Focus On The
Scenarios That Are Important To Performance

Use cases describe categories of behavior of a system
or one of its subsystems. They capture the user’s view
of what the system is supposed to do. Critical use
cases are those that are important to responsiveness
as seen by users, or those for which there is a perfor-
mance risk. That is, critical use cases are those for

which the system will fail, or be less than successful, if
performance goals are not met.

Not every use case will be critical to performance. The
80-20 rule applies here: A small subset of the use
cases (≤20%) accounts for most of the uses (≥80%) of
the system. The performance of the system is domi-
nated by these heavily used functions. Thus, these
should be your first concern when assessing perfor-
mance.

Don’t overlook important functions that are used infre-
quently but must perform adequately when they are
needed. An example of an infrequently used function
whose performance is important is recovery after some
failure or outage. While this may not occur often, it may
be critical that it be done quickly.

Each use case is described by a set of scenarios that
describe the sequence of actions required to execute
the use case. Not all of these scenarios will be impor-
tant from a performance perspective. For example,
variants are unlikely to be executed frequently and,
thus, will not contribute significantly to overall perfor-
mance.

For each critical use case, focus on the scenarios that
are executed frequently, and on those that are critical
to the user’s perception of performance. For some sys-
tems, it may also be important to include scenarios that
are not executed frequently, but whose performance is
critical when they are executed, such as recovery from
an outage.

Select the scenarios, get consensus that they are the
most important, then focus on their design and imple-
mentation to expedite processing and thus optimize
their responsiveness. People are more likely to have
confidence in the model results if they agree that the
scenarios used and workloads used to obtain the
results are representative of those that are actually
likely to occur. Otherwise, it is easy to rationalize that
any poor performance predicted by the models is
unlikely, because the performance scenarios chosen
will not be the dominant workload functions. The sce-
narios also drive the measurement studies by specify-
ing the conditions that should be performance tested.

2.7 Perform an Architecture Assessment to Ensure
That the Software Architecture Will Support
Performance Objectives

Recent interest in software architectures has under-
scored the importance of architecture in determining
software quality. While decisions made at every phase
of the development process are important, architectural
decisions have the greatest impact on quality attributes
such as modifiability, reusability, reliability, and perfor-

4

mance. As Clements and Northrop note [Clements and
Northrop 1996]:

“Whether or not a system will be able to exhibit its
desired (or required) quality attributes is largely
determined by the time the architecture is chosen.”

While a good architecture cannot guarantee attainment
of performance objectives, a poor architecture can pre-
vent their achievement.

Architectural decisions are among the earliest made in
a software development project. They are also the
most costly to fix if, when the software is completed,
the architecture is found to be inappropriate for meet-
ing quality objectives. Thus, it is important to be able to
assess the impact of architectural decisions on quality
objectives such as performance and reliability at the
time that they are made.

Performance cannot be retrofitted into an architecture
without significant rework; it must be designed into soft-
ware from the beginning. Thus, if performance is
important, it is vital to spend the up-front time neces-
sary to ensure that the architecture will not hinder
attainment of performance requirements. The “make it
run, make it run right, make it run fast” approach is
dangerous. Our experience is that performance prob-
lems are most often due to inappropriate architectural
choices rather than inefficient coding. By the time the
architecture is fixed, it may be too late to achieve ade-
quate performance by tuning.

The method that we use for assessing the performance
of software architectures is known as PASASM [Will-
iams and Smith 2002]. It was developed from our expe-
rience in conducting performance assessments of
software architectures in a variety of application
domains including web-based systems, financial appli-
cations, and real-time systems. PASA uses the princi-
ples and techniques of software performance
engineering (SPE) to determine whether an architec-
ture is capable of supporting its performance objec-
tives. The method may be applied to new development
to uncover potential problems when they are easier
and less expensive to fix. It may also be used when
upgrading legacy systems to decide whether to con-
tinue to commit resources to the current architecture or
migrate to a new one.

2.8 Secure The Commitment To SPE At All Levels
Of The Organization

The successful adoption of SPE requires commitment
at all levels of the organization. This is typically not a
problem with developers. Developers are usually anx-
ious to do whatever is needed to improve the quality of
their software.

If there is a problem with commitment, it usually comes
from middle managers who are constantly faced with
satisfying many conflicting goals. They must continu-
ally weigh schedule and cost against quality of service
benefits. Without a strong commitment from middle
managers, these other concerns are likely to force SPE
aside. Commitment from upper management is neces-
sary to help middle managers resolve these conflicting
goals.

2.9 Establish an SPE Center of Excellence to Work
with Performance Engineers on Project Teams

It is important that you designate one or more individu-
als to be responsible for performance engineering. You
are unlikely to be successful without a performance
engineer (or a performance manager) who is responsi-
ble for:

• Tracking and communication of performance
issues

• Establishing a process for identifying and
responding to situations that jeopardize the
attainment of the performance objectives

• Assisting team members with SPE tasks
• Formulating a risk management plan based on

shortfall and activity costs
• Ensuring that SPE tasks are properly performed

The responsible person should be high enough in the
organization to cause changes when they are neces-
sary. The performance engineering manager should
report either to the project manager or to that person’s
manager.

The person responsible for performance engineering
should be in the development organization rather than
the operations organization. You will have problems if
responsibility for SPE is in the operations organization
because developers will likely put priority on meeting
schedules over making changes to reduce operational
costs.

Making SPE a function of the capacity planning group
is also a mistake in most organizations, even though
that group usually already employs individuals with
performance modeling expertise. While some capacity
planners have the performance engineering skills,
most are mathematical experts who are too far
removed from the software issues to be effective.

With the “SPE Center of Excellence” approach, mem-
bers of the development team are trained in the basic
SPE techniques. In the early phases of a project, the
developers can apply these techniques to construct
simple models that support architectural and design
decisions. This allows developers to get feedback on
the performance characteristics of their architecture
and design in a timely fashion. Later, as the models

5

become more complex, someone from the SPE Center
can take them over to conduct more detailed studies
that require more technical expertise.

The SPE Center develops tools, builds performance
expertise, and assists developers with modeling prob-
lems. A member of this group may also review the
team’s models to confirm that nothing important has
been overlooked. The central group can also develop
reusable models or reference models, as well as pro-
vide data on the overhead for the organization’s hard-
ware/software platforms. Finally, the performance
group can provide assistance in conducting measure-
ments.

2.10 Ensure that Developers and Performance
Specialists Have SPE Education, Training, and
Tools

SPE consists of a comprehensive set of methods. Edu-
cation and experience in these methods improves the
architectures and designs created by developers. It
helps performance specialists interface with develop-
ers, and shortens the time necessary for SPE studies.
Performance tuning experience is helpful for SPE but it
is not the same as proactive performance engineering.
To be proficient you need additional education and
training.

Tools are essential for SPE. Modeling tools expedite
SPE studies and limit the mathematical background
required for performance analysts to construct and
solve the models. Measurement tools are vital for
obtaining resource consumption data, evaluating per-
formance against objectives, and verifying and validat-
ing results. However, simply acquiring a set of tools will
not guarantee success. You must also have the exper-
tise to know when and how to use them. It is also
important to know when the result reported by a tool is
unreasonable, so that problems with models or mea-
surements can be detected and corrected.

The project team must have confidence in both the pre-
dictive capabilities of the models, and the analyst’s skill
in using them. Without this confidence, it is easier to
attribute performance problems predicted by the mod-
els to modeling errors, rather than to actual problems
with the software. If the developers understand the
models and how they were created, they are more
likely to have confidence in them.

2.11 Require Contractors To Use SPE On Your
Products

You should require your contractors (e.g., external
developers suppliers, etc.) to use SPE in developing
your products to avoid unpleasant surprises when the
products are delivered.

It is also important to specify deliverables that will allow
you to assess whether SPE is being properly applied.
These deliverables fall into four broad categories:

• Plans: These artifacts are targeted primarily at
project management. They include technical
plans for each development phase, as well as
configuration management plans, policies, and
procedures governing the production and main-
tenance of other SPE artifacts.

• Performance objectives: These artifacts include
specifications for key performance scenarios,
along with quantitative, measurable criteria for
evaluating the performance of the system under
development. They also include specifications
for the execution environment(s) to be evalu-
ated.

• Performance models and results: This category
includes the performance models for key sce-
narios and operating environments, along with
the model solutions for comparison to perfor-
mance objectives.

• Performance validation, verification, and mea-
surement reports (V&V): This category includes
documentation and measurement results that
demonstrate that the models are truly represen-
tative of the software’s performance, and that
the software will meet performance require-
ments.

3.0 PERFORMANCE MODELING BEST
PRACTICES

These are best practices used by performance engi-
neers who model the software architecture and design.

3.1 Use Performance Models To Evaluate
Architecture And Design Alternatives Before
Committing to Code

Today’s software systems have stringent requirements
for performance, availability, security and other quality
attributes. In most cases, there are trade offs that must
be made among these properties. For example, perfor-
mance and security often conflict with one another.

It’s unlikely that these trade offs will sort themselves
out and ignoring them early in development process is
a recipe for disaster. The “make it run, make it run right,
make it run fast” approach is dangerous.

While it is possible to refactor code after it has been
written to improve performance, refactoring is not free.
It takes time and consumes resources. The more com-
plex the refactoring, the more time and resources it
requires. When performance problems arise, they are
most often at the architecture or design level. Thus,
refactoring to solve performance problems is likely to
involve multiple components and their interfaces. The

6

result is that later refactoring efforts are likely to be
large and very complex.

One company we worked with used a modeling study
to estimate that refactoring their architecture would
save approximately $2 million in hardware capacity.
However, because the changes to the architecture
were so extensive, they decided that it would be more
economical to purchase the additional hardware.
Another company used historical data to determine that
its cost for refactoring to improve performance was
approximately $850,000 annually [Williams, et al.
2002].

Simple performance models can provide the informa-
tion needed to identify performance problems and eval-
uate architecture and design alternatives for correcting
them. These models are inexpensive to construct and
evaluate. They eliminate the need to implement the
software and measure it before understanding its per-
formance characteristics. And, they provide a quantita-
tive basis for making trade-offs among quality attributes
such as reliability, security, and performance.

3.2 Start With The Simplest Model That Identifies
Problems With The System Architecture,
Design, Or Implementation Plans Then Add
Details As Your Knowledge Of The Software
Increases

The early SPE models are easily constructed and
solved to provide feedback on whether the proposed
software is likely to meet performance goals. These
simple models are sufficient to identify problems in the
architecture or early design phases of the project. You
can easily use them to evaluate many alternatives
because they are easy to construct and evaluate.
Later, as more details of the software are known, you
can construct and solve more realistic (and complex)
models.

Later in the development process. As the design and
implementation proceed and more details are known,
you expand the SPE models to include additional infor-
mation in areas that are critical to performance.

3.3 Use Best- And Worst-Case Estimates Of
Resource Requirements To Establish Bounds
On Expected Performance And Manage
Uncertainty In Estimates

SPE models rely upon estimates of resource require-
ments for the software execution. The precision of the
model results depends on the quality of these esti-
mates. Early in the software process, however, your
knowledge of the details of the software is sketchy, and
it is difficult to precisely estimate resource require-
ments. Because of this, SPE uses adaptive strategies,
such as the best- and worst-case strategy.

For example, when there is high uncertainty about
resource requirements, you use estimates of the upper
and lower bounds of these quantities. Using these esti-
mates, you produce predictions of the best-case and
worst-case performance. If the predicted best-case
performance is unsatisfactory, you look for feasible
alternatives. If the worst-case prediction is satisfactory,
you proceed to the next step of the development pro-
cess with confidence. If the results are somewhere in
between, the model analyses identify critical compo-
nents whose resource estimates have the greatest
effect, and you can focus on obtaining more precise
data for them.

Best- and worst-case analysis identifies when perfor-
mance is sensitive to the resource requirements of a
few components, identifies those components, and
permits assessment of the severity of problems as well
as the likelihood that they will occur. When perfor-
mance goals can never be met, best-and worst-case
results also focus attention on potential design prob-
lems and solutions rather than on model assumptions.
If you make all the best-case assumptions and the pre-
dicted performance is still not acceptable, it is hard to
fault the assumptions.

3.4 Establish A Configuration Management Plan
For Creating Baseline Performance Models and
Keeping Them Synchronized With Changes To
The Software

Many of the SPE artifacts evolve with the software. For
example, performance scenarios and the models that
represent them will be augmented as the design
evolves. Managing changes to these SPE artifacts is
similar to the configuration management used to man-
age changes to designs or code. Configuration man-
agement also makes it possible to ensure that a
particular version of a performance model is accurately
matched to the version of the design that it represents.
While it isn’t essential for many systems to have a for-
mal configuration management plan, safety-critical sys-
tems and others require both the plan and the control
of SPE artifacts.

Baselines for scenarios and models should be estab-
lished following their initial validation and verification.
Once an artifact has been baselined, it may only be
changed using the established change control proce-
dure.

The configuration management plan should specify
how to identify an artifact (e.g., CustomerOrder soft-
ware model v1.2), the criteria for establishing a base-
line for an artifact, and the procedure to be used when
making a change.

7

3.5 Use Performance Measurements to Gather Data
For Constructing SPE Models and Validating
Their Results

We have found that stakeholders are far more likely to
believe initial model results when they are based on
measurements of similar software or earlier versions of
the modeled software. Even when you begin with esti-
mates, use the models to study the sensitivity of model
results to the estimates. Identify estimates with the
greatest sensitivity, and obtain measurements to sub-
stitute for the estimates as early as possible.

Once parts of the system are implemented or proto-
typed, you can measure the resource usage of key
components. Some portions of the system may be fully
operational and can be measured, while other parts
may still be in early or middle stages of design. Mix
measurements of implemented components with walk-
throughs of others to develop model specifications.
Then you can more precisely evaluate the system as it
evolves.

Measurements substantiate model predictions, and
confirm that key performance factors have not been
omitted from the models. Occasionally, software execu-
tion characteristics are omitted from a model because
their effects are thought to be negligible. Later, you
may discover that they in fact have a significant impact
on performance. The way to detect these omissions is
to measure critical components as early as possible
and continue measuring them, to ensure that changes
do not invalidate the models.

4.0 PERFORMANCE MEASUREMENT BEST
PRACTICES

These are practices for those responsible for measur-
ing software performance and for performance testing.

4.1 Plan Measurement Experiments to Ensure That
Results Are Both Representative And
Reproducible

There are two key considerations in planning perfor-
mance measurements: They must be representative
and reproducible. To be representative, measurement
results must accurately reflect each of the factors that
affect performance: workload, software, and computer
system environment. The goal is to design your mea-
surement experiment in a way that balances the effort
required to construct and execute the measurement
experiment against the level of detail in the resultant
data. When unimportant details are omitted, both the
design effort and the overhead required to collect the
data are reduced.

Reproducibility gives you confidence in the results. In
order for a measurement to be reproducible, the work-

load, software, and computer system environment
must be controlled so that you can repeat the measure-
ment and get the same (or very similar) results each
time.

The traditional scientific method is useful for designing
and conducting performance measurements. The
steps in the scientific method are:

1. Understand the purpose of the measurement—the
questions to answer or the hypothesis to test.

2. Identify the data needed to answer those questions,
along with the data collection tools and techniques
to be used.

3. Identify experimental variables and controls. Ideally,
if you are studying the effect of changing these vari-
ables, you only allow one variable to change at a
time. You may be able to use multivariate tech-
niques to analyze your data when this is not possi-
ble.

4. Define the test cases: workload, software, and the
environment for each test.

5. Execute the tests and collect the data.
6. Analyze, interpret, and present the results.

All steps in this scientific method apply to SPE mea-
surements. Experience shows that the following are
vital to success:

• Careful design of the experimental test cases
• Identification of necessary data
• Collection and coordination of the measurement

results

Defining the test cases means selecting the approach
for representing the workload, software, and environ-
ment; and developing a test plan with priorities for the
tests to be run.

Too much data obscures essential results, and may
even perturb them because of the data collection over-
head. Too little data reduces the experiment’s useful-
ness, and may cause you to repeat an expensive set of
measurements.

If the data comes from multiple sources, coordinate the
measurements: Match the start and finish of the data
collection intervals, and the granularity of the measure-
ments.

For example, you cannot equate CPU utilization col-
lected during an hour-long test of peak volumes with
CPU utilization averaged over an eight-hour period.

It is unlikely that you will have time to run all of the
measurements that you would like. Without a prioritized
plan that defines the measurements to be performed,

8

you are likely to run out of time, only to discover that
you are missing the most important data.

4.2 Instrument Software to Facilitate SPE Data
Collection

You instrument software by inserting code (probes) at
key points to measure pertinent execution characteris-
tics. For example, you might insert code that records
the time at the start and end of a business task to mea-
sure the end-to-end time for that task.

There are at least three reasons for supplementing the
standard tools with instrumentation: convenience, data
granularity, and control.

The first reason for instrumenting is to conveniently
gather exactly the data you need. Although standard
measurement tools may report SPE data, there are
currently no tools that conveniently generate one report
containing precisely the SPE data you need. Thus, get-
ting the data is inconvenient at best. Some data, such
as the sequence, frequency, and characteristics of user
actions, is practically impossible to gather with stan-
dard measurement tools—you must analyze detailed
traces and derive these events from them. Instrument-
ing allows you to tally the user requests within the soft-
ware where they are easily identified, and produce
convenient reports with exactly the data you need.

The second reason for instrumenting is that the data
granularity from standard measurement tools seldom
matches the SPE requirements. For example, suppose
we want the end-to-end response time for a typical
user session. Most data collection tools report perfor-
mance data for online systems by “user interaction,”
that is, the starting event is the receipt of data or control
information from the user, and the ending event is the
transmission of a response. To use the standard mea-
surement tools, you must gather data for each user
interaction, and then calculate the session total from
the individual times.

The third reason to instrument code is to control the
measurement process. For SPE, we seldom need all of
the measurement data all of the time; rather, we period-
ically need some of the data. Collecting data with stan-
dard measurement tools is not just a matter of flipping
a switch; measurement requires many execution and
data analysis steps. If measurements are infrequent, or
if experienced personnel are unavailable, others must
recreate the measurement steps. Instrumenting your
code allows you to easily turn selected measurements
on and off as needed.

4.3 Measure Critical Components Early and Often
to Validate Models and Verify Their Predictions

Measurements substantiate model predictions, and
confirm that key performance factors have not been
omitted from the models. Occasionally, software execu-
tion characteristics are omitted from a model because
their effects are thought to be negligible. Later, you
may discover that they in fact have a significant impact
on performance, as illustrated in the following anec-
dote:

An early life cycle model specified a transaction with
five database “Selects.” During detailed design, “Order
by” clauses were added to three of the “Selects.” The
developers viewed the additional clause as “insignifi-
cant” because only one to five records would be sorted
for each “Select.” Upon investigation, though, the per-
formance analyst discovered that over 50,000 instruc-
tions were executed for each sort!

The way to detect these omissions is to measure criti-
cal components as early as possible and continue
measuring them, to ensure that changes do not invali-
date the models.

5.0 BEST PRACTICE TECHNIQUES

These best practices identify techniques for working
effectively with others including developers, manage-
ment, and other divisions within the organization.

5.1 Quantify the Benefits of Tuning Versus
Refactoring the Architecture or Design

Often tuning efforts that correct performance problems
that arise due to a failure to employ SPE during soft-
ware development masquerade as SPE successes.
While tuning those systems can produce noticeable
improvements, the resulting performance is unlikely to
equal the performance of a well-architected system.

The best way to counter this difficulty is to expose tun-
ing “success” for what it is—by comparing what was
possible with tuning to what you could have achieved
by using SPE effectively. For example, if a tuning
project is constrained to use the existing architecture
because of the extent of changes that would be
required to modify the architecture, some simple SPE
models could quantify the difference in performance
achieved through tuning, versus the performance with
an improved architecture. If possible, include an esti-
mate of the total testing and development time required
for the tuning approach versus the time to create mod-
els and build the software correctly from the outset.
Collecting this data over time will provide a useful basis
for constructing a business case for SPE for future
projects [Williams and Smith 2003b].

9

5.2 Produce Timely Results for Performance
Studies

Timely formulation and presentation of results and rec-
ommendations is vital, especially when corrective
action is likely to be required. If a significant amount of
time elapses between when the information is needed
and when it is provided, key architectural or design
decisions may have already been made. If this hap-
pens, the required changes may be more difficult to
make, or they may no longer be feasible.

5.3 Produce Credible Model Results and Explain
Them

The project team must have confidence in both the pre-
dictive capabilities of the models, and the analyst’s skill
in using them. Without this confidence, it is easier to
attribute performance problems predicted by the mod-
els to modeling errors, rather than to actual problems
with the software. If the developers understand the
models and how they were created, they are more
likely to have confidence in them. Be sure to explain
how the models represent the software processing
steps and interpret the model results. Demonstrating
that models match measurements is another way to
build confidence in the models.

You may need to establish the viability of the SPE mod-
els to predict the performance of your unique software
problems. You will need to establish that the early mod-
els are capable of predicting the software’s ultimate
performance and identifying problems. Doing this when
you adopt SPE promotes acceptance of the new tech-
nology and establishes the credibility of the analysts
and the models.

5.4 Produce Quantitative Data for Thorough
Evaluation of Alternatives

If you do uncover a problem, the bad news is more
likely to be received well is you can also present alter-
natives for solving it. Quantitative data on the costs and
benefits of alternatives will help the project team make
the best choice from among the alternatives.

5.5 Secure Cooperation and Work to Achieve
Performance Goals

User representatives, managers, designers, and per-
formance analysts should form a cooperative team
working toward the common goal of developing a prod-
uct that satisfies quality of service objectives. The pur-
pose of SPE is not to solve models, to point out flaws in
either designs or models, or to make predictions–it is to
make sure that performance requirements are correctly
specified and that they are achieved in the final prod-
uct.

6.0 SUMMARY AND CONCLUSIONS

This list characterizes the 24 best practices used by
SPE practitioners. It should be clear from the list that
proactive SPE means getting involved in new develop-
ment projects early and working to build-in perfor-
mance. For project management it identifies
performance risk areas and applies effort commensu-
rate with the risk. It tracks costs and benefits of SPE for
future planning. It integrates SPE into the software
development process and the project schedule. It
establishes performance objectives and holds develop-
ers and managers accountable for meeting them. It
focuses on critical parts of the system, and makes sure
that the architecture can meet performance objectives
for those parts. It uses quantitative performance mod-
els as the basis for architecture and design decisions.
An organization that has a commitment to SPE at all
levels; supports an SPE Center of Excellence; and has
training, education and tools increases the likelihood of
successful, timely deployment of high-performance
systems.

For performance modeling, the software performance
models provide the basis for evaluating architecture
and design alternatives before committing to code.
Best practices start with simple models, use best- and
worst-case estimates of resource requirements to
establish performance bounds and manage uncer-
tainty, and match the model details to the software
knowledge. They establish a plan for keeping base-
lined models that are synchronized with the software.
They use measurements for model parameters and
validation of results.

Performance measurement best practices plan experi-
ments and ensure that results are representative and
reproducible. They instrument software to facilitate
SPE data collection, measure critical components early
and often to validate models and verify their predic-
tions.

Best-practice techniques for working effectively include
collecting data to quantify the benefits of tuning versus
architecture and design refactoring as a basis for con-
structing the SPE business plan. Modelers provide
timely results, produce credible model results and
explain them, and produce quantitative data sufficient
for a thorough evaluation of alternatives. They secure
cooperation and work to achieve performance objec-
tives.

If you practice SPE now, this list will either give you
confidence that you are on the right track, or give you
some items for your “to do list.” If you are new to SPE,
get started and move in this direction as you get experi-
ence.

10

7.0 REFERENCES

[Boehm 1991] B. Boehm, “Software Risk Manage-
ment: Principles and Practice,” IEEE Software,
vol. 8, no. 1, pp. 32-41, 1991.

[Clements and Northrop 1996] P. C. Clements and L.
M. Northrop, “Software Architecture: An Executive
Overview,” Technical Report No. CMU/SEI-96-TR-
003, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, 1996.

[Javelin 2002] Javelin Technologies, “Best Practice
Definition,” Oakville, Ontario, Canada, 2002
(www.javelin-tech.com)

[Reifer 2002] D. J. Reifer, Making the Software Busi-
ness Case: Improvement by the Numbers, Bos-
ton, Addison-Wesley, 2002.

[Smith 1990] C. U. Smith, Performance Engineering of
Software Systems, Reading, MA, Addison-Wes-
ley, 1990.

[Smith and Williams 2002] C. U. Smith and L. G. Will-
iams, Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software, Boston,
MA, Addison-Wesley, 2002.

[Smith and Williams 2003a] C. U. Smith and L. G. Will-
iams, “Ten Best Practices for Software Perfor-
mance Engineering,” MeasureIT, Computer
Measurement Group online Newsletter, June
2003.

[Williams and Smith 2002] “L. G. Williams and C. U.
Smith, “PASASM: An Architectural Approach to
Fixing Software Performance Problems,” Pro-
ceedings of the CMG, Reno, December 2002.

[Williams and Smith 2003b] “L. G. Williams and C. U.
Smith, “Making the Business Case for Software
Performance Engineering,” Technical Report
www.perfeng.com, submitted for publication, June
2003.

[Williams, et al. 2002] L. G. Williams, C. U. Smith,
Craig Hanson, Mary Hesselgrave, Thad Jennings,
Panel: “The Economics of Software Performance
Engineering,” CMG 2002, Reno, December, 2002.

