
Five Steps to Establish Software Performance Engineering
in Your Organization

Most software performance problems are due to fundamental architecture or design prob-
lems. Thus they are introduced early in development, but are typically not discovered until
late, when they are more difficult and costly to fix. Software Performance Engineering
(SPE) is a systematic, quantitative approach for cost-effectively building performance into
software systems. It consists of a process for applying the SPE methods throughout the
life cycle of new systems; data required for SPE studies; software and system execution
models for quantitative performance assessments; and other techniques for success appli-
cation to software projects.

This paper covers the essential steps for establishing an SPE capability in your organiza-
tion. It describes each step and gives pointers to additional information that will help you
implement them in your organization.

Connie U. Smith, Ph.D.
Performance Engineering Services

PO Box 2640
Santa Fe, New Mexico, 87504-2640

(505) 988-3811
http://www.perfeng.com/

Lloyd G. Williams, Ph.D.
PerfX

2345 Dogwood Circle
Louisville, Colorado 80027

(720) 890-8116
lloydw@perfx.net

Copyright © 2006, PerfX and Performance Engineering Services. All rights reserved. Appears in Proc. CMG 2006
INTRODUCTION

Software performance engineering (SPE) is a method
for constructing software systems to satisfy perfor-
mance requirements. The SPE process begins early in
the software life cycle and uses quantitative methods to
identify satisfactory designs and to eliminate those that
are likely to have unacceptable performance before
developers invest significant time in implementation.
SPE continues through the detailed design, coding and
testing phases to predict and manage the performance
of the evolving software as well as monitor and report
actual performance versus specifications and predic-
tions. SPE methods encompass: performance data col-
lection; quantitative analysis techniques; prediction
strategies; management of uncertainties; data presen-
tation and tracking; model verification and validation;
critical success factors; and performance design princi-
ples, patterns and antipatterns.

Experience shows that performance of new systems
can be orders of magnitude better, with no disruption to
delivery schedules, when these techniques are sys-
tematically applied throughout development. Perfor-
mance is typically addressed, however, after
performance problems are detected late in develop-
ment. It is difficult to persuade managment and devel-

opers to apply SPE early enough in development to
prevent problems.

Persuading organizations to apply SPE can be prob-
lematic. SPE is sensible and it works, so sometimes a
technical argument may succeed. Other times, you
may want to start with a business case to present the
financial reasons and benefits (as covered in step 5). If
you know of a recent “performance disaster” you may
leverage the persuasion with a presentation of how to
avoid similar situations in the future. The use of new
technology increases risks of performance problems,
so you may pitch the idea to manage those risks. Out-
sourcing the development of critical systems is no
guarantee that performance requirements will be met
unless you apply SPE during development, so that’s
another opportunity to pitch the idea.

This paper starts at the point that you have justified the
use of SPE and are ready to establish it. It covers five
essential steps to establish SPE in your organization:

1. Learn the SPE process, modeling and analysis
techniques

2. Create the initial team
3. Acquire an initial set of tools
4. Strengthen skills on a pilot project

5. Establish on-going SPE

In order to be self-contained, we first cover the steps in
the SPE process and the models used to predict per-
formance. Then we offer advice for establishing a
team, tools, and organization, conducting a pilot
project, and building a business case. The steps do not
have to be applied in this order, you may adapt them to
your particual situation. For example, some organiza-
tions require a business case before acquiring tools.

STEP1: LEARN THE SPE PROCESS AND
MODELING AND ANALYSIS TECHNIQUES

Before you start, you need a good understanding of the
overall process, the quantitative models, the analysis
techniques, and how to apply them. This will help you
explain them to others to get initial buy-in, and give you
a quick start on your first project. A brief overview is
included in the following section. You can get more
information by attending a class, attending conference
presentations, and/or reading a book such as [Smith
and Williams 2002].

SPE Overview
Performance is an essential quality attribute of every
software system. Many object-oriented and non-object-
oriented software systems, however, cannot be used
as they are initially implemented due to performance
problems. Systems delivered with poor performance
result in damaged customer relations, lost productivity
for users, lost revenue, cost overruns due to tuning or
redesign, and missed market windows.

It is possible to cost-effectively design performance into
new software systems. Doing this requires careful
attention to performance goals throughout the life
cycle. Software performance engineering (SPE) pro-
vides a systematic, quantitative approach to managing
performance throughout the development process.

SPE uses deliberately simple models of software pro-
cessing with the goal of using the simplest possible
model that identifies problems with the system archi-
tecture, design, or implementation plans. It is relatively
easy to construct and solve these models to determine
whether the proposed software is likely to meet perfor-
mance goals. As the software development process
proceeds, we refine the models to more closely repre-
sent the performance of the emerging software and re-
evaluate performance.

SPE is language and platform independent. The mod-
els are constructed from architectural and design-level
information. Thus, SPE works with C++ and Java as
well as with other object-oriented and non-object-ori-
ented languages. The execution behavior of the soft-

ware will be different with different languages and
platforms. Nevertheless, this is reflected in the
resource requirement specifications, not the model
structure.

SPE can be easily integrated into the software devel-
opment process. It has been used with traditional pro-
cess models, such as the waterfall model. It works
especially well with iterative, incremental processes
such as the Unified Process [Kruchten 1999], [Jacob-
son, et al. 1999]. With an iterative, incremental pro-
cess, you can use SPE techniques to assess and
reduce the risk of performance failure at the project
outset, and at each subsequent iteration.

The cost of SPE is usually a minor component of the
overall project cost. Lucent Technologies has reported
that the cost of SPE for performance-critical projects is
about two to three percent of the total project budget.
For other, less critical, projects, SPE typically costs less
than one percent of the total project budget. For
projects where the performance risk is very high, the
SPE expenditure may be as much as ten percent of the
project budget.

SPE efforts can save far more than they cost by detect-
ing and preventing performance problems. Bank One
reported that, on one project, SPE costs over a five-
month period were $147,000. During this time, the
team analyzed three applications and identified modifi-
cations that resulted in a projected annual savings of
$1,300,000 [Manhardt 1998]. Similarly, the perfor-
mance engineering group at MCI reported a
$20,000,000 savings in one year with SPE due to
reduced resource requirements that resulted in
deferred configuration upgrades [CMG 1991]. Similar
compelling results were reported in panel sessions at
recent CMG conferences.

SPE is not a silver bullet or a cure-all for performance
problems. SPE takes thought, effort, and analysis to
produce the desired results. However, SPE efforts can
save far more than they cost by detecting and prevent-
ing performance problems. The return on investment
for SPE more than justifies its use.

SPE Process and Models
The SPE process is facilitated by object-oriented mod-
eling notations such as the Unified Modeling Language
(UML)[Rumbaugh, et al. 1999]. Much of the information
needed for SPE’s performance models can be cap-
tured as part of the object-oriented analysis and design
process. Use cases, which are identified as part of the
requirements definition, are a natural link between soft-
ware development activities and SPE. The scenarios
that describe the use cases provide a starting point for
constructing the performance models.

The SPE process includes the following steps. The
activity diagram in Figure 1 captures the overall pro-
cess.

1. Assess performance risk: Assessing the perfor-
mance risk at the outset of the project tells you how
much effort to put into SPE activities. If the project is
similar to others that you have built before, is not
critical to your mission or economic survival, and
has minimal computer and network usage, then the
SPE effort can be minimal. If not, then a more signif-
icant SPE effort is needed.

2. Identify critical use cases: The critical use cases are
those that are important to the operation of the sys-
tem, or that are important to responsiveness as
seen by the user. The selection of critical use cases
is also risk driven. You look for use cases where
there is a risk that, if performance goals are not met,
the system will fail or be less than successful. Typi-
cally, the critical use cases are only a subset of all
the use cases of the software.

3. Select key performance scenarios: It is unlikely that
all of the scenarios for each critical use case will be
important from a performance perspective. For each
critical use case, the key performance scenarios are

those that are executed frequently, or those that are
critical to the perceived performance of the system.
Each performance scenario corresponds to a work-
load. Scenarios are represented by UML sequence
diagrams.

4. Establish performance requirements: Next, identify
and define performance requirements and workload
intensities for each scenario selected in step 3. Per-
formance requirements specify the quantitative cri-
teria for evaluating the performance characteristics
of the system under development. These require-
ments may be expressed in three primary ways: by
response time, throughput, or constraints on
resource usage. For information systems, response
time is typically described from a user perspective,
that is, the number of seconds required to respond
to a user request. Throughput requirements are
specified as the number of transactions or events to
be processed per unit of time.

Workload intensities specify the level of usage for
the scenario. They are specified as an arrival rate
(e.g., number of Web site hits per hour) or number
of concurrent users.

Repeat steps 5 through 8 until there are no outstanding
performance problems.

5. Construct performance models: We use execution
graphs to represent software processing steps in
the performance model. Step 3’s sequence-diagram
representations of the key performance scenarios
are translated to execution graphs.

6. Determine software resource requirements: The
processing steps in an execution graph are typically
described in terms of the software resources that
they use. Software resource requirements capture
computational needs that are meaningful from a
software perspective. For example, we might spec-
ify the number of messages sent or the number of
database accesses required in a processing step.

Early in the development process, estimates of
resource requirements may be simple best- and
worst-case estimates. Later, as each class is elabo-
rated, the estimates become more precise.

7. Add computer resource requirements: Computer
resource requirements map the software resource
requirements from step 6 onto the amount of ser-
vice they require from key devices in the execution
environment. Computer resource requirements
depend on the environment in which the software
executes. Information about the environment is
obtained from the UML deployment diagram and
other documentation. An example of a computer

Figure 1: The SPE Process

identify
critical

use cases

select key
performance

scenarios

establish
performance

objectives

assess
performance

risk

construct
performance

model(s)

add software
resource

requirements

add computer
resource

requirements

evaluate
performance

model(s)
modify
product
concept

revise
performance

objectives

verify and
validate
models

[performance
acceptable]

[feasible]

[infeasible]

modify/
create

scenarios

resource requirement is the number of CPU instruc-
tions and disk I/Os required for a database access.

Steps 6 and 7 could be combined, and the amount of
service required from key devices estimated directly
from the operation specifications for the steps in the
scenario. However, this is more difficult than estimating
software resources in software-oriented terms and then
mapping them onto the execution environment. In addi-
tion, this separation makes it easier to explore different
execution environments in “what if” studies.

8. Evaluate the models: Solving the execution graph
characterizes the resource requirements of the pro-
posed software alone. If this solution indicates that
there are no problems, you can proceed to solve the
system execution model. This characterizes the
software’s performance in the presence of factors
that could cause contention for resources, such as
other workloads or multiple users.

If the model solution indicates that there are prob-
lems, there are two alternatives:
• Modify the product concept: Modifying the prod-

uct concept involves looking for feasible, cost-
effective alternatives for satisfying this use case
instance. If one is found, we modify the sce-
nario(s) or create new ones and solve the model
again to evaluate the effect of the changes on
performance.

• Revise performance requirements: If no feasi-
ble, cost-effective alternative exists, then we
modify the performance goals to reflect this new
reality.

It may seem unfair to revise the performance
requirements if you can’t meet them (if you can’t
hit the target, redefine the target). It is not wrong
if you do it at the outset of the project. Then all
of the stakeholders in the system can decide if
the new requirements are acceptable. On the
other hand, if you get to the end of the project,
find that you didn’t meet your goals, and then
revise the requirements—that’s wrong.

9. Verify and validate the models: Model verification
and validation are ongoing activities that proceed in
parallel with the construction and evaluation of the
models. Model verification is aimed at determining
whether the model predictions are an accurate
reflection of the software’s performance. It answers
the question, “Are we building the model right?” For
example, are the resource requirements that we
have estimated reasonable?

Model validation is concerned with determining

whether the model accurately reflects the execution
characteristics of the software. It answers the ques-
tion, “Are we building the right model?” We want to
ensure that the model faithfully represents the
evolving system. Any model will only contain what
we think to include. Therefore, it is particularly
important to detect any model omissions as soon as
possible.

Both verification and validation require measure-
ment. In cases where performance is critical, it may
be necessary to identify critical components, imple-
ment or prototype them early in the development
process, and measure their performance character-
istics. The model solutions help identify which com-
ponents are critical.

These steps describe the SPE process for one phase
of the development cycle, and the steps repeat
throughout the development process. At each phase,
you refine the performance models based on your
increased knowledge of details in the design. You may
also revise analysis objectives to reflect the concerns
that exist for that phase.

More Information
This brief introduction covers only a small part of the
SPE techniques. SPE is a broad discipline and this
paper focuses on establishing a practice to apply the
basic analytical aspects of SPE. There are many other
facets of SPE, such as techniques for obtaining neces-
sary data, analysis strategies, contention delays due to
multiple users of a scenario and other workloads that
may compete for computer system resources,
advanced modeling techniques for Web and other dis-
tributed systems, performance principles, patterns,
antipatterns, etc. Sources of information on these addi-
tional topics are included later.

STEP 2: CREATE THE INITIAL TEAM

A small team is usually sufficient when you are starting;
you can grow later as needed. You need someone to
lead the effort, someone to conduct the SPE studies,
and you’ll want proper placement in the organization.

Responsibility for SPE
It is important that you designate one or more individu-
als to be responsible for performance engineering. You
are unlikely to be successful without a performance
manager who is responsible for:

• Tracking and communication of performance
issues

• Establishing a process for identifying and
responding to situations that jeopardize the
attainment of the performance requirements

• Assisting team members with SPE tasks
• Formulating a risk management plan based on

shortfall and activity costs
• Ensuring that SPE tasks are properly con-

ducted

The responsible person should be high enough in the
organization to cause changes when they are neces-
sary. The performance engineering manager should
report either to the project manager or to that person’s
manager.

Note: The level of effort required depends on your
performance risks. For minor risk projects, one per-
son may be able to support two projects. On high-risk
projects you may need several performance engi-
neers. The organizational placement of performance
engineers is discussed later.

Finding the Right People
Not everyone is cut out to be a performance engineer.
Filling this role requires a special set of talents and
interests. A performance engineer is someone who:

• Has diverse experience and interests.
Someone who has experience with a variety of
software types as well as a quantitative
background will be able to pick up the SPE
techniques more quickly. A natural curiosity is
desirable because it is often necessary to
investigate the cause of mysterious
performance problems.

• Has good communication skills and a good
rapport with others in the organization. A per-
formance engineer needs to work closely with
developers, project managers, and corporate
leaders. He or she must be able to present
results that may be unpopular in a way that
fosters communication and cooperation among
the various stakeholders to solve the problem.

• Is able to see the big picture. Early in develop-
ment, SPE requires the ability to distinguish
performance-critical areas from the less impor-
tant parts of the software. A tendency to focus
on details rather than on the big picture makes
it more difficult to identify those areas.

• Doesn’t mind talking to users—and is good at
it. Users can provide the best information on
how the future system will be used. This helps
to identify the Fast Path, workload intensities,
execution path probabilities, loop repetitions,
and other performance parameters.

• Feels comfortable working with software.
Sometimes, especially if you’re beginning an
SPE effort late in a project, it is necessary to
extract details of the software’s behavior from
the code. It is also necessary to be able to

identify viable alternative implementations
when the original strategy has unsatisfactory
performance.

Performance modeling skills are much easier to
develop than these intangible qualities. We have seen
several situations where someone who had perfor-
mance modeling or measurement experience but
lacked one or more of the above characteristics was
designated as a performance engineer. In each case,
there were shortcomings for both for the organization
and the individual. For example, no amount of mathe-
matical modeling skill can compensate for the inability
to effectively communicate the results, or the inability to
identify software alternatives.

Finally, the best candidate is the person who wants to
do the job. Assigning an uninterested person to the
task will result in mediocre SPE efforts. We saw one
instance in which the designated person was “unavail-
able” for key meetings, left work early, and so on. The
result was that the person understood only a fraction of
what he needed to know, and was unable to adopt and
use the SPE models that we had created for the orga-
nization.

Proper Organizational Placement
The person responsible for performance engineering
should be in the development organization rather than
the operations organization. You will have problems if
responsibility for SPE is in the operations organization
because developers will likely put priority on meeting
schedules over making changes to reduce operational
costs.

Making SPE a function of the capacity planning group
is also a mistake in most organizations, even though
that group usually already employs individuals with
performance modeling expertise. While some capacity
planners have the performance engineering skills listed
in the previous section, most are mathematical experts
who are too far removed from software issues so it may
be difficult for them to identify architecture and design
issues and alternatives. If they have a development
background and are able to interact effectively with
developers, however, this could be a viable option.

STEP3: ACQUIRE AN INTIAL SET OF TOOLS

SPE requires tool support for several different tasks:
modeling, measurement, development, and reporting.
Measurement and reporting tools are generally already
available in an organization. You may want to augment
them later to make your work easier. Here we focus on
modeling tools. You need some tools to conduct the
performance analyses. Start small, you can add more
later as you gain experience and staff.

Modeling tools for SPE can be categorized as system
modeling tools or software modeling tools. Most sys-
tem modeling tools support the queueing network
model paradigm. Most are intended for use in capacity
planning and they are not particularly useful for early
SPE studies because they do not focus on the perfor-
mance characteristics of the software. Thus, it is diffi-
cult to relate the results produced by the tool to the
structure of the software, in order to identify software
architectural or design alternatives for solving prob-
lems. Using these tools effectively also typically
requires a high level of performance modeling exper-
tise. This makes it difficult for developers to use them
to create simple models to quickly evaluate design
alternatives. They are most useful in later stages of
development when it is necessary to model lower-level
details of the system, such as a communication proto-
col.

There are only a few tools specifically oriented to SPE.
Those that are available enable modelers to describe
the processing steps of the proposed software along
with the execution environment, and then evaluate the
predicted performance. These tools are better suited to
the SPE tasks than system modeling tools, and they do
not require special performance modeling expertise for
their use. As a result, developers often use them to
evaluate their own software.

Tools in this category include SPE•ED™ [Smith and
Williams 1997], [Smith and Williams 1998], [L&S], and
IPS Performance Designer [HyPerformix].

SPE•ED’s focus is the software performance model.
Users create execution graph models of proposed soft-
ware processing, and provide specifications of the exe-
cution environment. Users can choose to solve either
the software execution model or the automatically gen-
erated system execution model. The software model is
solved analytically; system models may be solved
either analytically or by simulation. Model results are
presented both with numeric values and color coding,
making it easy to identify problematic software pro-
cessing steps or devices.

IPS Performance Designer uses a spreadsheet-type
interface to describe processing tiers and their
resource requirements. Models are solved using simu-
lation, and resource consumption and response times
are reported. It gives limited information on the design
and implementation of individual software components.

Tools such as these simplify SPE evaluations and
make it possible for developers to conduct their own
studies without needing extensive modeling expertise
or assistance from a performance specialist.

STEP 4: STRENGTHEN SKILLS ON A PILOT
PROJECT

A pilot project is a small-scale project that is conducted
to test a process under realistic conditions. It is small
scale to keep the costs low. The conditions should be
realistic so that you can evaluate whether the process
can be used on a full-scale project. A pilot project is
often also valuable as a learning tool. Pilot projects are
also safer and less expensive than full-scale develop-
ment efforts for introducing new technologies such as
SPE.

Pilot projects are an excellent way to introduce SPE (or
any new technology) into your organization. A pilot
project allows you to:

• Assess the SPE techniques under realistic, but
non-critical, conditions

• Develop standards and refine procedures for
use on other projects

• Train key personnel for “seeding” throughout
the organization

• Demonstrate the value of SPE to management

Choose a pilot project that is:
• Manageable: A pilot project is just that; it

should not be a full-scale development effort.
The team should be small (no more than four
to six individuals), and the duration of the
project should be short (no more than six
months).

• Non-trivial: The pilot project should produce
results that are visible and clearly valuable to
the organization. This means that you should
not use a “toy” application. If the results are not
clearly relevant to the types of software that
you develop, it is too easy to ignore them. The
project should also have non-trivial perfor-
mance issues.

• Non-critical: While the project should be realis-
tic, it should not be one that is critical to your
organization’s survival or one that is under
extreme schedule pressure. If the project gets
into trouble, it is too easy to blame the new
technology and go back to the old way of doing
things without giving it a fair evaluation.

• Measurable: It is important to know whether
you’ve succeeded. While members of the pilot
project team may have a good feeling about
the project, this is not sufficient to demonstrate
success. You should develop objective criteria
for evaluating the project, such as: “Does the
product meet its performance requirements
upon initial completion?” “How precise were
early performance model predictions?” “Did
performance models identify performance
problems that were corrected?” and so on.

Ideally you will be able to get experience on a pilot
project first. Sometimes, however, imminent high risk
projects dictate that you jump in and learn on the job. It
is a good idea to get a mentor to help make sure that
your first project is successful.

STEP5: ESTABLISH ON-GOING SPE
Once you have accomplished these tasks, you are
ready to establish SPE practices so that they are con-
sistently and systematically applied. You want to offi-
cially and formally integrate them into your project
planning and development process. SPE deliverables
and integration with development processes are cov-
ered in [Smith and Williams 2002].

You will likely need a business case for upper manage-
ment that includes the costs for applying SPE and the
savings you expect to achieve.

Business Case
A business case is a document presented to win man-
agement commitment for investment in a proposed
project or course of action. It establishes that the
project will meet an identified business need and is fea-
sible, affordable and a sound investment. If there are
competing alternatives, it provides a quantitative basis
for choosing among them. The business case also pro-
vides a basis for managing the proposed project and
measuring its effectiveness.

The concept of preparing a business case to justify a
proposed investment is not new. However, in today’s
economy shrinking budgets, competing proposals for
limited funds, and higher fiscal accountability for man-
agement have combined to revive the popularity of this
tool. Business and government entities from IT depart-
ments to human service organizations are now requir-
ing that employees justify new initiatives with a
business case.

A business case describes the cash flows (both costs
and benefits) that occur as a result of pursuing the pro-
posed course of action and their timing as well as the
methods and assumptions that were used in calculat-
ing them. It also includes a discussion of critical suc-
cess factors (e.g., training or the use of consultants),
the impact of the project on the organization (will it
change the organization chart?), and an identification
of any significant risks that could change the outcome
along with recommendations for mitigating them.

For example, a business case for SPE would identify
the problem to be solved, indicate how SPE can solve
the problem, and quantify the costs and benefits of
adopting SPE for a given project or the organization as
a whole. It would also discuss the impact of SPE on the

software development process and identify any risks
that might prevent the projected benefits from being
realized along with strategies for mitigating them

The essential components of a business case are
listed below. The title and format of each section will
vary by organization.

Executive Summary. The Executive Summary should
be a short summary of your business case; one page is
usually best. The rest of the document will provide
details to support the summary. This may be the only
part of your business case that some people read,
however, so you need to make your case here clearly
and succinctly. Include a high-level summary of the
results and focus on the financial analysis. Leave the
details and explanations for the body of the document.

Problem Statement. There is a reason you are pro-
posing this project. For SPE that reason could be a his-
tory of performance failures on previous projects or a
high risk of failure on a new project. This section should
summarize the issues, how they affect the organization
and your assessment of what the source of the prob-
lem is.

Proposed Solution. This section describes how the
problem will be addressed and the expected outcomes.
Begin with an overview of the project. Then provide
enough detail to demonstrate that what you propose is
in line with your organization’s business goals and can,
in fact, be achieved.

Financial Analysis. The financial analysis details the
costs and benefits of the proposed solution and sum-
marizes them using one or more of the financial analy-
sis tools described below. It is based on a cost model—
a spreadsheet model that includes all of the costs and
benefits related to the proposed project.

The model serves as a guide for performing a cost/
benefit analysis (see below). The model results are
then used to compute financial metrics such as: Return
on Investment, Internal Rate of Return, or Total Cost of
Ownership. These metrics are discussed below.

Timeline. Each major step in implementing your pro-
posed solution should be shown on a timeline such as
a Gantt Chart. These include major milestones (e.g.,
completion of training) as well as major cash flows
(e.g., expenditures such as equipment).

Sensitivity Analysis and Risks. This section dis-
cusses potential problems that might prevent achieve-
ment of the objectives and overall benefits of the
proposal. For example, what if one or more of the
assumptions used in the financial analysis is wrong?

Or, what if a step in the process cannot be completed
on time?

Sensitivity analysis looks for items in the cost model for
which a small change in value can make a difference in
the outcome of the analysis. If assumptions were used
in deriving these numbers, they should be examined
and best- and worst-case estimates used to predict
what happens if the assumptions become invalid.

This section should also include any potential risks to
the project or organization. For example, if you can’t
hire a performance analyst by the required date, how
will this affect your projected benefits? If these risks
can be quantified and used to assign probabilities to
model results, this analysis should be included
[Schmidt 2003c]. For example, do you have a 50%
probability of realizing 100% of your projected benefits
and a 90% chance of realizing at least 40% of the pro-
jected benefits? For information on risk analysis meth-
ods, see [Boehm 1991] and [Boehm 1989]. Also
discuss ways of minimizing or mitigating each risk.

Conclusions and Recommendations. This section
should summarize the problem, the proposed solution,
and the costs and benefits of the solution. Be sure and
include information on return on investment or other
positive financial outcomes.

It’s important to make your conclusions and recom-
mendations explicit. Don’t assume that because you
have presented all of the evidence your audience will
reach the conclusions on their own.

Cost/Benefit Analysis
Cost/benefit analysis weighs the anticipated benefits of
a course of action against its expected costs. In per-
forming a cost/benefit analysis, you attempt to quantify
every cost and benefit, including seemingly intangible
costs or benefits such as reduced employee turnover. If
a cost or benefit cannot be quantified, it does not con-
tribute to the financial analysis. That is, it is assigned a
value of 0.

Costs. Costs are anything for which you spend money.
Examples of costs in an SPE initiative include salaries
for performance specialists, tools, and support equip-
ment such as workstations for performance analysts or
a dedicated performance testing facility.

Benefits. Benefits are anything that generates revenue
or avoids a cost. For SPE, benefits are usually costs
due to poor performance that you reduce or avoid as a
result of applying SPE. These include: costs of refac-
toring or tuning, hardware upgrades, contractual penal-
ties, user support costs and others described in the
introduction.

Incremental Analysis. Business cases are typically
based on incremental cost/benefit analysis. An incre-
mental analysis includes only those costs and benefits
that are due specifically to the proposed investment or
course of action. Each line item in the financial model
includes only changes from “business as usual”. For an
SPE business case, you would include only costs that
are due to adopting SPE (such as software modeling
tools) and not costs that would occur whether or not
you used SPE. Similarly, you would include only bene-

fits that can be directly attributed to SPE (such as avoided refactoring costs).

Figure 2: SPE Cost/Benefit Worksheet

One-Time Costs $ Cost Avoidance $
Tools Refactoring 812,500$

Performance Modeling Tool 8,000$ Hardware Upgrade 600,000$
Load Driver 70,000$ Lost Revenue 975,000$

Workstation 4,000$ Telephone Agents 325,000$
Training

In-House Training (15 Developers) 66,846$
Performance Engineer 5,923$

Consulting/Mentoring 250,000$
Total One-Time Costs 404,769$ Total Cost Avoidance 2,712,500$
Recurring Costs (Annual) $ Intangible Benefits

Software Maintenance (Tools) 12,100$ Improved Corporate Image
Salaries (Including Benefits) Enhanced Customer Relations

Performance Analyst (1.0 FTE) 100,000$ Improved Employee Morale
Continuing Education 2,200$

Total Recurring Costs 114,300$

Cost/Benefit Worksheet

Figure 2 shows a sample worksheet (adapted from
[Reifer, 2002]) for an incremental SPE cost/benefit
analysis.The worksheet includes both one-time and
recurring costs. One-time costs occur once. They typi-
cally include outlays for tools or capital equipment or
for project startup costs such as training. Recurring
costs are ongoing. They include such things as mainte-
nance on hardware or software licenses or salaries.

“Sunk” Costs. Funds that have already been spent or
committed are irrelevant to the analysis and should not
be included. These are known as sunk costs. For
example, the fact that you held an in-house SPE class
three years ago is irrelevant if the development team
has turned over completely and everyone needs the
training now.

Intangible Benefits. It is important to quantify all bene-
fits. In some cases, this may be difficult. For example, it
is difficult to quantify the benefits of reduced employee
turnover. However, you can value the effects of
reduced employee turnover in terms of recruiting
expense, training costs, and productivity.

It may be impossible to quantify some benefits. For
example, it is difficult to assign a dollar value to
“employee morale” and it is likely that your proposed
project is only one of many influences that impact
employee morale. Benefits such as this are intangible
benefits.

If you can’t reasonably quantify a cost or benefit, it’s
best to leave it out of the financial analysis. These
items are likely to be controversial and leave you open
to charges of “padding” the analysis. That does not
mean that you can’t discuss them elsewhere in the
business case. Companies are often willing to invest in
“improved customer satisfaction” or “enhanced
employee morale” and these important intangibles can
tip the scales when the financial analyses for compet-
ing alternatives are close.

More information about SPE business cases and a
detailed example are in [Williams and Smith 2003].

OTHER ASPECTS OF SPE
This brief introduction covers only a small part of the
SPE techniques. Additional aspects not included here
are:

• extensions for modeling Web applications and
other distributed systems

• performance walkthroughs and other data gath-
ering techniques

• three key modeling strategies

• software measurement and instrumentation
• performance-oriented design principles
• performance patterns
• performance antipatterns
• late life cycle SPE techniques
• integrating SPE with the software development

process
These topics are discussed in [Smith and Williams
2002]. In addition, a method for the Performance
Assessment of Software Architectures (PASASM) is
documented in recent papers [Williams and Smith
2002a], [Williams and Smith 2002b]. The Quantitative
Scalability Evaluation Method (QSEMSM) is also cov-
ered in a recent paper [Williams and Smith 2005].
Other recent publications:

• document new performance antipatterns [Smith
and Williams 2002a], [Smith and Williams
2003],

• describe SPE best practices [Smith and Will-
iams 2003b]

• define performance model interchange formats
for exchanging models from design tools into
modeling tools and among different modeling
tools [Smith and Lladó 2004], [Smith, et al.
2005].

These papers are available at www.perfeng.com and
through the Computer Measurement Group.

CONCLUSIONS

Software performance engineering (SPE) is a method
for constructing software systems to satisfy perfor-
mance requirements. Experience shows that perfor-
mance of new systems can be orders of magnitude
better, with no disruption to delivery schedules, when
SPE techniques are systematically applied throughout
development.

This paper has presented a five-step approach to
establishing SPE in your organization. The steps are:

1. Learn the SPE process, modeling and analysis
techniques

2. Create the initial team
3. Acquire an initial set of tools
4. Strengthen skills on a pilot project
5. Establish on-going SPE

An overview of the requirements for each step was pre-
sented along with pointers to additional, more detailed
information.

References

[Boehm 1991] B. Boehm, “Software Risk Manage-
ment: Principles and Practice,” IEEE Software,
vol. 8, no. 1, pp. 32-41, 1991.

[Boehm 1989] B. W. Boehm, Software Risk Manage-
ment, Washington, IEEE Computer Society Press,
1989.

[CMG 1991] Computer Measurement Group, Soft-
ware Performance Engineering Panel, moderator
C. U. Smith, Computer Measurement Group,
December, 1991.

[HyPerformix] HyPerformix, Inc., 4301 West Bank
Drive, Building A, Austin, TX 78746, (512) 328-
5544, www.hyperformix.com.

[Jacobson, et al. 1999] I. Jacobson, G. Booch, and J.
Rumbaugh, The Unified Software Development
Process, Reading, MA, Addison-Wesley, 1999.

[Kruchten 1999] P. Kruchten, The Rational Unified Pro-
cess: An Introduction, Reading, MA, Addison-
Wesley, 1999.

[L&S] L&S Computer Technology, Inc., Performance
Engineering Services Division, #110, P. O. Box
9802, Austin, TX 78766, (505) 988-3811,
www.perfeng.com.

[Manhardt 1998] D. Manhardt, “Applications Optimiza-
tion Methodology-An Approach,” Proceedings of
the First International Workshop on Software and
Performance, Santa Fe, NM, October, 1998, pp.
93-100.

[Reifer, 2002] D. J. Reifer, Making the Software Busi-
ness Case: Improvement by the Numbers, Bos-
ton, Addison-Wesley, 2002.

[Rumbaugh, et al. 1999] J. Rumbaugh, I. Jacobson,
and G. Booch, The Unified Modeling Language
Reference Manual, Reading, MA, Addison-Wes-
ley, 1999.

[Schmidt 2003c] M. J. Schmidt, “Business Case
Essentials: A Guide to Structure and Content,”
Boston, MA, Solution Matrix, Ltd. 2003 (www.solu-
tionmatrix.com).

[Smith, et al. 2005] Smith, C. U., V. Cortellessa, A. Di
Marco, C. M. Lladó and L. G. Williams, "From
UML models to software performance results: An
SPE process based on XML interchange for-
mats", Proc. 5th Int. Workshop on Software and
Performance, Palma, Illes Balears, Spain, ACM
Press, 2005.

[Smith and Lladó 2004] C.U. Smith and C.M. Lladó,
An XML-Based Performance Model Interchange
Format (PMIF 2.0), Proc. CMG, Las Vegas, NV,
2004.

[Smith and Williams 1997] C. U. Smith and L. G. Will-
iams, “Performance Engineering of Object-Ori-
ented Systems with SPE•ED,” Lecture Notes in
Computer Science 1245: Computer Performance
Evaluation, R. Marie et al., ed., Berlin, Germany,
Springer, pp. 135-154, 1997.

[Smith and Williams 1998] C. U. Smith and L. G. Will-
iams, “Performance Engineering Evaluation of
CORBA-Based Distributed Systems with
SPE•ED,” in Lecture Notes in Computer Science,
R. Puigjaner, ed., Berlin, Germany, Springer,
1998.

[Smith and Williams 2002] C. U. Smith and L. G. Will-
iams, Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software, Boston,
MA, Addison-Wesley, 2002.

[Smith and Williams 2002a] C.U. Smith and L. G. Will-
iams, "New Software Performance Antipatterns:
More Ways to Shoot Yourself in the Foot", Proc.
CMG, Reno, NV, 2002.

[Smith and Williams 2003] C.U. Smith and L. G. Will-
iams, "More New Software Performance Antipat-
terns: Even More Ways to Shoot Yourself in the
Foot", Proc. CMG, Dallas, TX, 2003.

[Smith and Williams 2003b] Smith, C. U. and L. G.
Williams, "Best Practices for Software Perfor-
mance Engineering", Proc. CMG, Dallas, TX,
2003.

[Williams and Smith 2002a] L. G. Williams and C. U.
Smith, “PASASM: A Method for the Performance
Assessment of Software Architectures,” Proceed-
ings of the Third International Workshop on Soft-
ware and Performance (WOSP2002), Rome, Italy,
July, 2002, pp. 179-189.

[Williams and Smith 2002b] L. G. Williams and C. U.
Smith, “PASASM: An Architectural Approach to
Fixing Software Problems,” Proc. CMG, Reno,
December, 2002.

[Williams and Smith 2003] Williams, L. G. and C. U.
Smith, "Making the Business Case for Software
Performance Engineering", Proc. CMG, Dallas,
TX, 2003.

[Williams and Smith 2005] Williams, L.G. and C.U.
Smith, “QSEMSM:Quantitative Scalability Evalua-
tion Method”, Proc. CMG, Orlando, FL, 2005.

