
PASASM: An Architectural Approach to
Fixing Software Performance Problems

When fixing performance problems in new or existing software or determining whether a
proposed system will meet its performance objectives, taking an architectural approach
can make it possible to achieve performance objectives more quickly and at a lower cost.
This paper describes PASA, a method for performance assessment of software architec-
tures. It was developed from our experience in conducting performance assessments of
software architectures in a variety of application domains including web-based systems,
financial applications, and real-time systems. PASA uses the principles and techniques of
software performance engineering (SPE) to determine whether an architecture is capable
of supporting its performance objectives. The method may be applied to new development
to uncover potential problems when they are easier and less expensive to fix. It may also
be used when upgrading legacy systems to decide whether to continue to commit
resources to the current architecture or migrate to a new one. The method is illustrated
with an example drawn from an actual assessment.

Lloyd G. Williams
Software Engineering Research

264 Ridgeview Lane
Boulder, Colorado 80302

(303) 938-9847
boulderlgw@aol.com

Connie U. Smith
Performance Engineering Services

PO Box 2640
Santa Fe, New Mexico, 87504-2640

(505) 988-3811
http://www.perfeng.com/

Copyright © 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.
1.0 INTRODUCTION
In our roles as performance consultants, we typically
see two problem situations:

1. A new or existing software system has poor perfor-
mance that requires speedy correction.

2. There are questions about whether new software or
an upgraded legacy system will be able to meet its
performance objectives.

The traditional approach to the first problem has been
to tune selected portions of the code in an attempt to
improve responsiveness, scalability, or both. Another
common approach, particularly where scalability is a
concern, is to simply add more or faster hardware.

Both of these approaches have serious limitations.
Most tuning efforts are begun before the data needed
to isolate problems and select appropriate solutions is
available. Without this information, it is easy to expend
a great deal of effort making software changes that pro-
duce little or no overall improvement. While adding

more hardware is often a good way to achieve scalabil-
ity goals, this is only true if the software is structured so
that it can effectively make use of the additional pro-
cessing power. If not, the investment in new hardware
may be wasted or the amount of new hardware
required may be prohibitively expensive.

In the second case, development organizations typi-
cally take a more proactive approach, considering the
structure of the software and frequently modeling
design alternatives to determine if they will meet perfor-
mance objectives. However, in many cases, they do not
consider the overall architecture of the software or sys-
tem, thereby missing opportunities to make significant
performance improvements. This is especially problem-
atic in distributed systems which are actually systems
of programs that not only have their own internal perfor-
mance considerations but also interact in potentially
complex ways.

We have found that starting with an understanding of
the software architecture can overcome these prob-
lems and make it possible to achieve performance
objectives more quickly and at a lower cost. Recent
research in software architectures has underscored the
importance of architecture in determining software per-
formance. As Clements notes [Clements 1996]:

SM PASA and Performance Assessment of Software Archi-
tectures Method are service marks of Software Engi-
neering Research and Performance Engineering
Services.
1

“Performance is largely a function of the frequency and
nature of inter-component communication, in addition
to the performance characteristics of the components
themselves, and hence can be predicted by studying
the architecture of a system.”

While a good architecture cannot guarantee attainment
of performance objectives, a poor architecture can pre-
vent their achievement. Thus, when correcting perfor-
mance problems, it is important to begin by
determining whether the current architecture will sup-
port your performance objectives before committing
significant time and resources to the effort. An architec-
ture assessment will provide the information you need
to decide whether to continue to commit resources to
the current architecture or migrate to a new one. An
architecture assessment provides the information you
need to:

• determine if the architecture can support scal-
ability goals,

• determine if problems can be fixed with tuning
and which parts to tune (before spending
months trying to no avail),

• to project the scalability, throughput and
response time with the tuning changes.

• to determine whether MIPS reduction requires
re-design or if tuning is sufficient

This paper describes PASA, a method for performance
assessment of software architectures. It was developed
from more than five-years of experience in conducting
performance assessments of multiple software archi-
tectures in several application domains including web-
based systems, financial applications, and real-time
systems. PASA uses the principles and techniques of
software performance engineering (SPE) to determine
whether an architecture is capable of supporting its
performance objectives [Smith and Williams 2002].

2.0 RELATED WORK
Kazman and co-workers describe two related
approaches to the evaluation of software architectures.
The Software Architecture Analysis Method (SAAM)
[Kazman, et al. 1996] uses scenarios to derive informa-
tion about an architecture’s ability to meet certain qual-
ity objectives such as performance, reliability, or
modifiability. The Architecture Tradeoff Analysis
Method (ATAM) [Kazman, et al. 1998] extends SAAM to
consider interactions among quality objectives and
identify architectural features that are sensitive to more
than one quality attribute. Once these sensitivities have
been identified, tradeoffs between quality objectives
can be evaluated. SAAM and ATAM have cursory simi-
larities to this work. A detailed discussion of similarities
and differences is in [Williams and Smith 2002].

Williams and Smith [Williams and Smith 1998] discuss
the performance evaluation of software architectures.
This paper extends that work with the inclusion of
architectural styles and performance antipatterns as
analysis tools. It also formalizes the architecture
assessment process based on the general software
performance engineering process described in [Smith
and Williams 2002].

Balsamo and co-workers [Balsamo, et al. 1998] dis-
cuss an approach to performance evaluation of soft-
ware architectures based on use of the Chemical
Abstract Machine (CHAM) formalism. Their method
automatically derives a Queueing Network Model
(QNM) from a CHAM description of the architecture.
Their work and other similar approaches such as
[Grassi, et al. 2000], [Cortellesa and Mirandola 2000]
and [Pooley and King 1999] focus on connecting
design notations to performance models.

Other, earlier publications such as [Smith and Williams
1998] and [Smith and Williams 1997] focus on the mod-
eling of a system once it is understood. Much of the
performance assessment work is based on the SPE
techniques for modeling and analyzing software perfor-
mance early in the life cycle [Smith and Williams 2002],
[Smith 1990]. In contrast this work focuses specifically
on the assessment of a software architecture, and
addresses the method for gathering information, inter-
acting with clients, and applying SPE principles and
techniques to arrive at the results of the assessment.

3.0 THE PASA METHOD
PASA is a method for the performance assessment of
software architectures. It uses the principles and tech-
niques of SPE [Williams and Smith 1998], [Smith and
Williams 2002] to identify potential areas of risk within
the architecture with respect to performance and other
quality objectives. If a problem is found, PASA also
identifies strategies for reducing or eliminating those
risks.

Our approach is scenario-based. Scenarios for impor-
tant workloads are identified and documented. These
scenarios then provide a means of reasoning about the
performance of the software as well as other qualities.
They also serve as a starting point for constructing per-
formance models of the architecture if more detailed
studies are needed.

The assessment consists of a formal review that exam-
ines the performance and other qualities of the archi-
tecture. PASA offers the following advantages:

• Detailed analysis is not always necessary
2

• The sooner a PASA assessment is conducted,
the more options you have for correction and the

easier they will be to implement.1

• A PASA assessment is relatively quick and inex-
pensive

• It identifies risks and potential problems as well
as strategies for eliminating them

• It correlates architectural parameters with per-
formance characteristics

• It provides decision support for developers and
project managers.

While it is best to do a PASA assessment early in
development, the reality is that tight schedules often
preclude doing things right, performance problems
occur, and shotgun tuning often fails to meet perfor-
mance objectives. When problems do occur, we start
the correction with the architecture, determine if it is
viable or if things should be done differently, then show
the benefits to demonstrate that it is better to do things
right from the outset.

The PASA process consists of the ten steps summa-
rized below. The steps are typically performed in the
order given. In some cases, however, the order may be
varied for some reason, such as to take advantage of
the availability of someone with expertise in a particular
area. For example, someone with expertise about a
particular component may only be available on a partic-
ular day. Also, discovery of new information in one step
often requires revisiting a previous one, so iteration is
common.

1. Process Overview—The assessment process
begins with a presentation designed to familiarize
both managers and developers with the reasons for
an architectural assessment, the assessment pro-
cess, and the outcomes.

2. Architecture Overview—In this step, the develop-
ment team presents the current or planned architec-
ture.

3. Identification of Critical Use Cases —The externally
visible behaviors of the software that are important
to responsiveness or scalability are identified.

4. Selection of Key Performance Scenarios—For each
critical use case, the scenarios that are important to
performance are identified.

5. Identification of Performance Objectives—Precise,
quantitative, measurable performance objectives

are identified for each key scenario for each situa-
tion or performance study of interest.

6. Architecture clarification and discussion—Partici-
pants conduct a more detailed discussion of the
architecture and the specific features that support
the key performance scenarios. Problem areas are
explored in more depth.

7. Architectural Analysis—The architecture is analyzed
to determine whether it will support the performance
objectives.

8. Identification of Alternatives—If a problem is found,
alternatives for meeting performance objectives are
identified.

9. Presentation of Results—Results and recommen-
dations are presented to managers and developers.

10.Economic Analysis—The costs and benefits of the
study and the resulting improvements.

The following sections describe each of these steps in
more detail.

In some cases, it is possible to conduct a complete
assessment in one intensive week. In most others,
however, it is likely that the initial assessment will iden-
tify potential problems that require performance mea-
surements and modeling before their impact can be
quantified. When measurements and modeling are
needed, the process typically spans several, less-inten-
sive weeks as data is gathered and evaluated.

3.1 Process Overview
It is important that everyone involved understand the
purpose of the architecture assessment, the process
that will be used, the architecture and processing infor-
mation that is required, and the potential outcomes.
Thus, the assessment begins with a presentation that
describes:

• the rationale for performing an architecture
assessment

• overview of SPE goals, model-based approach,
data required, and results produced

• the steps in the PASA process

• the architecture information needed to perform
the assessment

• tradeoffs between performance and other qual-
ity attributes

There is also an opportunity for managers and develop-
ers to ask questions and express their concerns.

3.2 Architecture Overview
The goal of this step is for the assessment team to gain
a high-level understanding of the architecture before

1. This is why it is best to start correcting existing perfor-
mance problems with the PASA process, rather than forge
ahead with tuning that may not work.
3

delving into its details. It starts with a presentation of
the current or planned architecture by one or more
members of the development team.

Typically, the assessment team has already reviewed
the available architecture documentation. Thus, this
session typically begins with a brief walkthrough of the
architecture. This is followed by a question-and-answer
session that focuses on missing details and validating
the assessors’ understanding of the architecture.

This step may involve a significant discovery phase.
We seldom see well-documented software architec-
tures such as those described in [Kruchten 1995].
Moreover, we have found that most architecture docu-
mentation is informal. Much of what we receive as
architecture documentation consists of box-and-line
diagrams that illustrate the infrastructure or “technical
architecture.” These diagrams show all of the middle-
ware products and all of the processors in the complex
but leave the software architecture undocumented. For
example, the diagrams may indicate that the system
uses WebSphere and NTServer but they do little to
reveal the nature of the software components that
make up the system or the relationships between them.
There is also little information on the dynamic aspects
of performing common functions. Finally, with legacy
systems, even if there is architecture documentation, it
is likely that there were changes made during imple-
mentation that are not reflected in the documentation
or that the system has evolved so that the documenta-
tion is no longer an accurate reflection of the current
state.

The lack of a well-documented software architecture is
not a show stopper, however. To overcome these prob-
lems, it is often necessary to deduce the architecture
from developer interviews, code, and other artifacts.
We have found that eliciting scenarios for the important
uses of the system is a good way to extract this infor-
mation. Thus, this step and the next two are often iter-
ated. In many cases, the information provided by
precisely characterizing the key scenarios is a major
revelation for the development team. Often, this is one
of the most valuable deliverables of the assessment.

3.3 Identification of Critical Use Cases
Use cases describe externally visible behaviors of the
software. Critical use cases are those that are impor-
tant to the operation of the system, or that are impor-
tant to responsiveness as seen by the user. Critical use
cases may also include those for which there is a sig-
nificant performance risk, i.e., those for which there is a
risk that, if performance objectives are not met, the sys-
tem will fail or be less than successful. Typically, the

critical use cases are only a subset of the total number
of uses of the system.

Use cases are most often described from an end-user
point of view. For example, with an automated teller
machine (ATM) we might investigate customer use
cases that describe deposits, withdrawals, etc. For
architecture assessments, however, it is important to
also consider other stakeholders. For example, a main-
tenance upgrade may require downloading large
amounts of code to client machines over a local or
wide-area network. Maintainers will want to know that
this can be accomplished in a reasonable amount of
time.

3.4 Selection of Key Performance
Scenarios

Each use case consists of a set of scenarios that
describe the sequence of actions required to execute
the use case. Not all of the scenarios belonging to a
critical use case will be important from a performance
perspective, however.

For each critical use case, we focus on the scenarios
that are executed frequently and on those that are criti-
cal to the user’s perception of performance. For some
systems, it may also be necessary to include scenarios
that are not executed frequently, but whose perfor-
mance is critical when they are executed. For example,
crash recovery or maintenance upgrades may not
occur frequently, but it may be important that they are
done quickly.

In many cases, particularly with legacy systems, use
cases and scenarios are not documented. In those
cases, the assessment team must work with the devel-
opment team to identify the important uses of the soft-
ware and detail the processing steps that are executed
for the key usage scenarios. The process used for elic-
iting this information is similar to that used for perfor-
mance walkthroughs, as discussed in [Smith and
Williams 2002].

Scenarios are documented using augmented UML
sequence diagrams [Booch, et al. 1999], [Smith and
Williams 2002]. In an object-oriented system, a
sequence diagram describes the objects (individual
objects, components, or subsystems) that cooperate to
perform a function and the sequence of interactions
between them. For non-object-oriented systems (as
most of the architectures that we encounter in fact are),
a sequence diagram documents the major software
units that perform a function and their interactions. The
use of sequence diagrams provides two advantages:

• The sequence diagram notation facilitates vali-
dation of the processing steps in the scenarios
4

and makes derivation of performance models
straightforward.

• When the software architecture is unclear, con-
structing sequence diagrams helps the assess-
ment team understand the components and
their interactions. They also help the assess-
ment team validate their understanding of the
architecture, and often inform maintainers of
legacy systems of the actual behavior of their
software.

3.5 Identification of Performance
Objectives

As Kazman and co-workers note [Kazman, et al. 1996]:

“Software architectures are neither intrinsically good
nor intrinsically bad; they can only be evaluated with
respect to the needs and goals of the organizations
that use them.”

In order for the assessment to be meaningful, those
needs and goals must be clearly defined. Each key
scenario should have at least one associated perfor-
mance objective for each situation or performance
study of interest. Typically, these will be end-to-end
requirements. In some cases, however, it may be desir-
able to break an end-to-end performance objective into
sub-objectives that are assigned as performance bud-
gets to each part of the processing.

Performance objectives may be expressed in several
different ways, including response time, throughput, or
constraints on resource usage. In each case, the objec-
tive should be quantitative and measurable. Vague
statements such as “the system shall be as fast as pos-
sible” are not useful. There is no way that you can ever
be sure that you have met an objective like this. An
objective such as “the end-to-end time to process a
typical user request should be less than 2 seconds” is
much more useful.

It is also important to specify the conditions and perfor-
mance studies under which the required performance
is to be achieved for each combination of scenario and
objective. For example, the performance studies may
examine the scalability for the fourth quarter for the
next 3 years. The conditions would then specify the
workload mix and intensity expected for those quarters.

3.6 Architecture Discussions
Because the architecture descriptions provided seldom
contain the information required for the assessment,
we usually schedule meetings with architects and
designers of key portions of the system, once we have
identified them, to learn more about component inter-
actions. When appropriate, we also meet with staff who
were involved in previous tuning efforts and those who

may have performance measurement data to learn as
much as we can about problem areas and current per-
formance metrics such as response time, utilizations,
and resource requirements of the system.

3.7 Architecture Analysis
Several techniques are brought to bear in analyzing the
performance of a software architecture. They include:

3.7.1 Identification of the underlying architectural
style(s)

Software architectural styles or patterns ([Shaw and
Garlan 1996], [Buschmann, et al. 1996], [Schmidt, et
al. 2000]) describe the structural organization of a fam-
ily of systems that share common architectural fea-
tures. Architectural styles are similar to design patterns
[Gamma, et al. 1995] in that they capture, at the level of
overall system organization, recurring solutions to com-
mon problems in structuring software systems.

If the architecture is representative of one of the com-
mon architectural styles, we can use the general per-
formance characteristics of the style to reason about
the performance of that instance. For example, in a lay-
ered architecture there is a great deal of overhead as
requests are passed from layer to layer. Thus, this style
would not be appropriate for situations where high
throughput is desired.

If the overall architectural style is appropriate but there
are deviations from the archetype in some details,
these deviations are explored to determine if they have
a negative impact on performance. This is discussed in
more detail below.

3.7.2 Identification of performance antipatterns
Antipatterns [Brown, et al. 1998] are conceptually simi-
lar to patterns [Gamma, et al. 1995] in that they docu-
ment recurring solutions to common design problems.
They are known as antipatterns because their use (or
misuse) produces negative consequences. Antipat-
terns document common mistakes made during soft-
ware development. They also document solutions for
these mistakes. Thus, antipatterns tell you what to
avoid and how to fix a problem when you find it.

Performance antipatterns document common perfor-
mance problems and how to fix them [Smith and Will-
iams 2001], [Smith and Williams 2002]. They capture
the knowledge and experience of performance experts
by providing a conceptual framework that helps ana-
lysts to identify performance problems and suggesting
ways of solving them.

Antipatterns are refactored (restructured or reorga-
nized) to overcome their negative consequences. A
5

refactoring is a correctness-preserving transformation
that improves the quality of the software. For example,
the interaction between two components might be
refactored to improve performance by sending fewer
messages with more data per message. This transfor-
mation does not alter the semantics of the application,
but it may improve overall performance. Refactoring
may also be used to enhance other quality attributes
including reusability, modifiability, or reliability.

3.7.3 Performance modeling and analysis
Portions of the architecture may require more quantita-
tive analysis. Initially, a simple analysis of performance
bounds is sufficient to identify problem areas. For
example, if your performance objective is to process
100 transactions per second then each transaction
must take less than 0.01 seconds to complete. Other
performance bounds are covered in [Lüthi, et al. 1997],
[Majumdar, et al. 1991], [Hsieh and Lam 1987],
[Stephens and Dowdy 1984], [Dowdy, et al. 1984],
[Eager and Sevcik 1983].

If the analysis of performance bounds indicates the
need for more detailed modeling, this is done in a sec-
ond phase of the assessment process. The use of
models makes it possible to quantitatively assess the
detailed performance of the software. The models also
allow analysts to quickly and easily explore architec-
tural alternatives if problems are discovered.

The models used are deliberately simple so that feed-
back on the performance characteristics of the archi-
tecture can be obtained quickly and inexpensively. The
goal is to use the simplest possible model that identi-
fies problems with the proposed architecture. These
models can also be carried over into the development
phase and elaborated to more closely represent the
performance of the emerging software.

The precision of the model results depends on the
quality of the estimates of resource requirements.
Because these are difficult to estimate for software
architectures, SPE uses adaptive strategies, such as
upper- and lower-bounds estimates and best- and
worst-case analysis to manage uncertainty. For exam-
ple, when there is high uncertainty about resource
requirements, analysts use estimates of the upper and
lower bounds of these quantities. Using these esti-
mates, analysts produce predictions of the best-case
and worst-case performance. If the predicted best-case
performance is unsatisfactory, they seek feasible alter-
natives. If the worst case prediction is satisfactory, they
proceed to the next step of the development process. If
the results are somewhere in-between, analyses iden-
tify critical components whose resource estimates have
the greatest effect and focus on obtaining more precise

data for them. A variety of techniques can provide more
precision, including: further refining the architecture
and constructing more detailed models or constructing
performance prototypes and measuring resource
requirements for key components.

Two types of models provide information for architec-
ture assessment: the software execution model and the
system execution model. The software execution
model represents key aspects of the software execu-
tion behavior. Details of the construction and evaluation
of these models may be found in [Smith and Williams
2002]

Software execution models are generally sufficient to
identify performance problems due to poor architectural
decisions [Williams and Smith 1998]. However, in some
cases, there may be questions about effects due to
contention for resources. When these questions arise,
it is necessary to use a system execution model.

The system execution model is a dynamic model that
characterizes software performance in the presence of
factors, such as multiple users or other workloads, that
could cause contention for resources. The results
obtained by solving the software execution model pro-
vide input parameters for the system execution model.
Solving the system execution model provides the fol-
lowing additional information:

• more precise metrics that account for resource
contention

• sensitivity of performance metrics to variations
in workload composition

• effect of new software on service level objec-
tives of other systems

• identification of bottleneck resources

• comparative data on options for improving per-
formance via: workload changes, software
changes, hardware upgrades, and various com-
binations of each

Details of the creation and evaluation of system execu-
tion models are also in [Smith and Williams 2002].

3.8 Identification of Alternatives
If performance problems are found, it is often possible
to identify alternatives that may make it possible to
meet performance objectives.

The following sections illustrate ways in which architec-
tural alternatives may be identified.

3.8.1 Deviations from architectural style
In some cases, the architecture may resemble one of
the common architectural styles in many respects but
6

deviate from the archetype in one or more details.
While a deviation from the classic style does not neces-
sarily mean that there is a problem, it does indicate an
issue that should be explored.

For example, an architecture may deviate from the
classic style in a way that obviously negates one or
more of the recognized performance advantages of
that architectural style. In those cases, bringing the
architecture into conformance with the style will pro-
duce performance gains. For example, in one assess-
ment, we discovered that the development team had
started with a classic pipe-and-filter architecture but
then compromised that style during prototyping. The
result was a monolithic implementation in which all of
the filters ran within a single process. This limited the
scalability of the application which was a primary per-
formance goal. Implementing the software so that each
filter can run independently (as in the classic pipe-and-
filter style) improves scalability.

3.8.2 Alternative interactions between
components

Sometimes, the interaction between two components
may be a source of performance problems. In these
cases, it may be possible to change the interaction to
improve responsiveness or throughput. For example,
using the Coupling Pattern [Smith and Williams 2002]
to match an interface to its most frequent use will often
improve performance.

3.8.3 Refactoring to remove an antipattern
If a performance antipattern is found during the analy-
sis step, refactoring the architecture to remove that
antipattern will improve performance.

For example, one of the antipatterns that we encounter
most frequently is the One-Lane Bridge [Smith and Wil-
liams 2002]. This antipattern arises whenever only one
(or a few) process(es) may proceed because of the
need to wait for a resource (e.g., a database lock or
synchronous call to a single-threaded process). The
One-Lane Bridge can cause large backlogs that cause
wide variability in response times. The general solution
to this problem is to refactor the software to spread the
load either spatially (e.g., by accessing different por-
tions of the database) or temporally (e.g., by perform-
ing work at different times). The specific solution will
depend on the characteristics of the application.

3.9 Presentation of Results
It is important that the PASA client receive a document
containing the mission, findings, specific steps to take,
the priority of the steps, and their relative importance.
This increases the likelihood that they will be able to

use the results of the assessment and will be able to
follow-up to quantify the benefit of the activity. The doc-
ument may be prose or a copy of presentation slides.

As noted above, in many cases, modeling is needed to
quantify problems and their improvements. Since rapid
feedback is important, in these cases preliminary
results, along with a modeling and measurement plan
are presented at the end of the first week. Then, when
the modeling is complete, a final presentation summa-
rizes all of the findings.

3.10 Economic Analysis
An architecture assessment typically yields dramatic
savings in costs and development time. Nevertheless,
the benefits may not be noticed because success is the
absence of problems. The economic analysis clarifies
the amount spent on the analysis and subsequent
improvements. It also quantifies the cost of hardware
and/or development time and effort that would have
been required if the problems had not been detected in
time. It produces compelling evidence of the value of
SPE, and encourages inclusion of SPE in the develop-
ment schedule and budget.

4.0 EXAMPLE ASSESSMENT
This example is drawn from an actual architecture
assessment. The details have been modified to pre-
serve confidentiality. In some cases, they have also
been simplified for presentation.

The system under consideration is a data acquisition
system that receives data from multiple sources, for-
mats and translates incoming messages, applies busi-
ness rules to interpret and process messages, updates
a data store with the data that was received, and pre-
pares data for additional downstream processing. The
case study is presented here as a generic data acquisi-
tion system. It is representative of many of the applica-
tions that we have reviewed, including order-
processing (e.g., e-commerce), stock market data pro-
cessing, call-detail record processing, payment post-
ing, and ECM data acquisition.

Management requested an architecture assessment
because they were about to commit to a system
upgrade whose goal was to increase throughput by a
factor of ten. While an increase in hardware capacity
was considered, a ten-fold increase in hardware would
not be cost-effective. So, the goal of the assessment
was to determine whether the existing architecture was
adequate to support the increased throughput or a new
architecture was needed. If the current architecture
was deemed adequate, then the development team
requested that the assessment team identify opportuni-
7

ties, both strategic and tactical, for improving perfor-
mance.

4.1 Process Overview
The first PASA step was a briefing for everyone
involved to explain the process: what we will be doing,
what they need to provide, what we will do with it, and
what they can expect as a deliverable. The actual pre-
sentation is omitted here.

4.2 The Architecture
The architecture description we received consisted of
users manuals for the system administration features,
design documents for several of the key components,
and some class diagrams. None of the documents
focused on the most important use case, they all mixed
the various functions thus making it difficult to deter-
mine exactly what interactions occurred to process
messages received from the data feeds. When asked
specifically what processing occurred, participants
drew a diagram similar to that in Figure 1 and said that
the data is grabbed from the feed, deblocked into indi-
vidual messages, passed to the message handler to
update state and act on the data received, then an out-
put message is formatted and written for the down-

4.3 Use Cases
Use cases for this application include the data feeds for
the acquisition system, the downstream processes that
use the data, a switching feature that activates redun-
dant processing systems in case of failure, and system
administration features. After reviewing the documenta-
tion, we focused on the use case that takes messages
from the feed, formats them, applies business logic,
updates the data store, and sends them on for down-
stream processing. Different use cases deal with differ-
ent types of data. The dominant use case is the one
that processes an in-range data reading since these
make-up the bulk of the data processed.

4.4 Key Performance Scenarios
The key performance scenario deals with processing
an error-free in-range data reading. Figure 2 shows the
sequence diagram for this scenario. The diagram
shows that the processing for a message creates anIn-

Figure 1: “Architecture” Diagram

Deblocker
Message
Handler

Output
Writer

Data
Grabber

Figure 2: Sequence diagram for processing in-range data.

theSensorState theGlobalState theActionTable

getData()

getData()

computeNewState()

update()

getData()

computeAction()

updateAction()

anOutputMessage
«create»

write()

forward(anOutputMessage)

applyBusinessRules()

par

update()

getNext()

aMessage

«create» anInRange
Reading
8

RangeReading, which gets sensorState data, updates
it, gets GlobalState data, etc. More information about
sequence diagrams is in [Smith and Williams 2002b].

4.5 Performance Objectives
The system currently processes 2,000 messages per
second. Management anticipates that the upgraded
system must handle 20,000 messages per second.
The end-to-end time to process a message was not
specified, however team members felt that it should
take no more than 30 seconds between the time the
message arrives and when it is transmitted to down-
stream processes.

4.6 Architecture Discussion
This step involved several lengthy meetings with mem-
bers of the development team who could explain partic-
ular details of the current processing. This information
allowed us to map the processing steps in Figure 2
onto the processes and threads identified in the initial
documentation.

Developers felt that, in order to cost-effectively achieve
a ten-fold increase in throughput, it would be necessary
to run more concurrent streams, speed up the current
streams to process more messages, or use a combina-
tion of these two approaches. The team felt that the
middleware for passing messages between processes
would be a barrier to scalability, so several discussions
focused on the nature of the interactions with the mid-
dleware, whether it was essential to maintain the cur-
rent collection of shared versus non-shared objects,
etc.

We also reviewed all available performance measure-
ments for the system. Most of them, however, were
gathered during various focused tuning efforts and it
was not possible to determine the current processing
time for the steps in the scenario, or the portion of the
time spent in the middleware versus the Message oper-
ations.

4.7 Architecture Analysis
It became clear from the discussions that the system
as implemented would need some performance
improvements in order to achieve the desired through-
put. Nevertheless, we were able to conclude that the
architecture itself was viable for the application, to iden-
tify some clear successes that had been achieved, to
identify some performance antipatterns that should be
the focus of future efforts, and to specify the steps in a
more detailed performance benchmarking, measure-
ment, and modeling study that would quantify the scal-
ability of the system. These are described in the
following sections.

4.8 Architecture Classification
After reviewing the initial documentation and architec-
ture discussions, it was clear that the overall architec-
ture is a classic pipe-and-filter style [Shaw and Garlan
1996] in which each stage in the pipeline applies an
incremental transformation to an incoming message
before passing it to the next stage or sending it on for
downstream processing. The current implementation
ran 20 streams (pipelines) concurrently with each
stream processing approximately 100 messages per
second to achieve a throughput of 2000 messages per
second.

The fundamental conclusion was that, while some per-
formance improvements were needed, the current
architecture would be able to support the goal of a ten-
fold increase in throughput.

4.9 Performance Antipatterns
We found several performance antipatterns in the exist-
ing implementation [Smith and Williams 2002], [Smith
and Williams 2002b]. The presence of these antipat-
terns presented significant limits to scalability:

• Excessive Dynamic Allocation—New message
objects were created every time a message was
received. For example, Figure 2 shows the cre-
ation of new InRangeReading and OutputMes-

sage objects. Figure 3 shows the class
hierarchy for messages. This is a deep hierar-
chy that is likely to result in considerable
expense for creation of objects at the bottom of
the lattice.

• god Class—The MessageHandler in Figure 2
behaves like a god class. It gets data from the
other objects (i.e., theSensorState, theGlobal-
State, theActionTable), uses the data to deter-

Figure 3: Message Class Hierarchy

Shared
Object

Message

Data
Reading

SensorData
Reading

InRange
Reading

OutofRange
Reading

State
Change

Error

...
9

mine processing requirements, then sends the
updated data back to the container object. This
results in extra message traffic and potentially
limits the concurrency in the system because
the Message Handler performs most of the
work.

• Unbalanced Processing—The algorithm used to
route messages from the data feed to the
appropriate parallel stream caused some of the
parallel streams to be much busier than others.
Throughput is maximized if all streams execute
at their maximum rate.

• Unnecessary Processing—There were several
processing steps that could potentially be elimi-
nated. Both an Input Message and an Output

Message were logged, but only one was neces-
sary. When a (temporary) backlog developed,
old messages were still processed by the sys-
tem, but they should have been discarded.
Many messages that were not needed by the
system were received and processed only to be
discarded late in the processing.

4.10 Modeling
Several of the issues that were identified required mod-
eling to quantify their impact and as well as the
improvements to be realized from design alternatives.
In this case study, it was necessary to quantify the scal-
ability of the system to precisely determine the hard-
ware cost and software changes that would be
necessary.

We constructed a software performance model from
the sequence diagram in Figure 2. A performance
benchmarking and measurement study was under-
taken to determine the resource requirements for the
processing steps in the scenario.

The first goal was to determine the performance bud-
get for the stages in the pipe-and-filter architecture.
Table 1 shows that average amount of time for each
stage is a function of the number of machines, the

number of parallel pipeline streams on each machine,
and the throughput of each stream. For example, the
first row shows that with 20 streams running on one
machine and a throughput of 100 messages per sec-
ond, each stage must complete in 0.01 seconds to
achieve 2,000 messages per second. Several options
are shown for achieving the desired throughput of
20,000 messages per second. Option 2 simply solves
the problem by adding more hardware (10 machines).
Option 3 uses 4 machines, reduces the number of
pipelines to 10, and increases the throughput of each
stream, and so on. We will construct a model to deter-
mine the viability of each alternative for achieving the
desired scalability.

We begin by constructing a model of the existing sys-
tem for validation. This model focuses on the Message

Handler stage in the pipe and filter because the mea-
surements confirmed that it is the step that limits the
overall throughput and scalability. The results of this

model are shown in Figure 4.1 The overall time for the
MessageHandler is 0.01 seconds as required, and the
first step takes the majority of this time. The utilization
statistics (not shown) matched those measured on the
system. Several other models were run under varying
workload intensities to confirm that the model results
matched the system measurements. The shading in
the diagram indicates the relative value of the results.
The scale may be set so that values over the perfor-
mance goal are dark grey, medium grey tones warn of
problems, and lighter shades (light grey or unshaded)
show areas that are probably not a problem.

The next step modeled the case in row 4 of Table 1 to
see if the current implementation of the MessageHan-

dler could meet the performance goal of 0.004 sec-
onds. The results in Figure 4 show that the total time
was 0.015 seconds—far greater than the 0.004 sec-
onds required. The time required to create the inRan-

Table 1: Performance Objectives

Machines Streams
Stream

Throughput
Performance

Objective
Total

Throughput

1 1 20 100 0.01 2,000

2 10 20 100 0.01 20,000

3 4 10 500 0.002 20,000

4 4 20 250 0.004 20,000

5 5 20 200 0.005 20,000

1. The models were constructed and solved using the
SPE•ED SPE tool. www.perfeng.com.
10

geReading and anOutputMessage (Excessive
Dynamic Allocation) are significant problems in meet-
ing this performance objective. Furthermore, because
the MessageHandler is a god class and performs
most of the work of the system, we cannot easily break
it into multiple stages in a pipe and filter to increase
throughput. If it were redesigned, each processing step
in the redesigned scenario would have 0.004 seconds
to complete rather than requiring the entire scenario to
complete in that time.

The models showed that the primary problem was not
with the messaging middleware as suspected, but with
the excessive processing in one stage of the pipeline
(MessageHandler) and with the Excessive Dynamic
Allocation.

Note that it is possible to get these results from the
measurements without constructing the software
model. We have found it useful, however, to construct
the model and use it to explain the current performance
of the system, its limitations, and alternatives for
improving performance. It is much easier to “see” the
performance bottlenecks in the diagram than to find
them in a table of numbers. (If that were easy, the
developers would have already identified the problem
and corrected it). The software performance model can
then be used to evaluate different designs for the Mes-

sageHandler that would enable it to operate in more
stages, and to evaluate other combinations of
machines, streams and throughputs to achieve the
desired scalability.

4.11 Identification of Alternatives
We were able to identify several alternatives for improv-
ing performance. They are categorized as either strate-
gic (those that require a significant amount of work but
have a potentially large payoff) and tactical (those that
require little work but have a smaller payoff).

Strategic Improvements—In addition to improvements
discussed above for removing the Excessive Dynamic
Allocation and god Class antipatterns, the Unneces-
sary Processing and the Unbalanced Processing, there
were other opportunities to significantly improve perfor-
mance by applying Performance Principles:

• Instrumentation Principle—the software should
have additional code to understand and control
performance. It was impossible to determine the
resource requirements for critical processing
steps without the special benchmarking and
measurement study. It is vital to quantify the
resource demand of processing steps to better
understand and control performance; to identify
bottlenecks and quantify proposed tactical
improvements for effective priorities on imple-
mentation, and establish performance budgets
for stages in the pipeline.

• Spread-the-Load Principle—monitor and control
the scheduling of messages to parallel streams,
purge aged messages, and filter unnecessary
messages.

Tactical Improvements—Other Performance Patterns
could also be applied to immediately improve system
throughput:

(a) Current Implementation (b) Option 4 Results

Figure 4: Model Results

getNext
And

Create

doState
Calcs

apply
Business

Rules

determine
Action

create
Output

Message write
Output

Message

forward
Message

updateAction

Residence Time: 0.010 sec

0.0042

0.0002

0.0026

0.0008

0.0019

0.0001

0.0001

0.0002

getNext
And

Create

doState
Calcs

apply
Business

Rules

determine
Action

create
Output

Message write
Output

Message

forward
Message

updateAction

Residence Time: 0.0154 sec

0.0065

0.0003

0.0037

0.0012

0.0030

0.0001

0.0002

0.0002
11

• Slender Cyclic Functions—Remove all unnec-
essary processing from the critical path, and
allocate processing that can be performed off
the critical path to other concurrent processes

• Batching—Reduce processing by getting a
batch of messages to process rather than one
at a time

Figure 5 shows a revised sequence diagram for pro-
cessing in-range data (cf. Figure 2) that includes these
improvements. Now, when a new message arrives, an
inRangeReading object is retrieved from theMes-

sagePool instead of dynamically creating a new object.
Additional objects (e.g., theBusinessRules) have also

been added to distrubute the intelligence that was inap-
propriately assigned to the MessageHandler. This
makes it possible to replace the single MessageHan-

dler stage by several smaller stages in the pipeline.

Figure 6 shows the model results for this revision. Note
that, with the “god” object removed, each step in the
execution graph corresponds to a separate (parallel) fil-
ter. As the results indicate, all stages except apply-
BusinessRules meet their performance objectives. For
the applyBusinessRules stage, the option is to tune
that step to achieve the 0.004 sec. goal or go to five
machines (row 5 of Table 1).

Figure 5: Revised Sequence Diagram

theSensorState theGlobalState theActionTable

update(anInRangeReading)

update(anInRangeReading)
computeNewState()

apply(anInRangeReading)

select(anInRangeReading)
computeAction()

anOutputMessage

write()

forward(anOutputMessage)

applyBusinessRules()

getNext()

aMessage
anInRange

Reading
theMessage

Pool

getInRangeReading()

anInRangeReading

copy(message)

getOutputMessage()

anOutputMessage
copy(this)

release(anOutputMessage)

release(this)

update

theBusiness
Rules

par
12

4.12 Presentation of Results
A preliminary presentation discussed the proposed
improvements and outlined a plan for the measurement
and modeling steps. Once the modeling phase was
complete, a final presentation summarized all the find-
ings and recommendations.

4.13 Economic Analysis
The cost of the initial assessment and the follow up
modeling phase was approximately $250,000. The
software changes required approximately 2 months of
effort from four people.

A ten-fold increase in hardware would have required 9
additional machines. With the changes, the system
actually required 4 additional machines (they were not
able to achieve the 0.004 second performance goal
with tuning alone). Thus the cost savings was over
$5,000,000! This savings is calculated for a single sys-
tem. Since there was a redundant failover system that
also needed upgrading, the total savings was over
$10,000,000.

The development team was unable to achieve the
0.004 second performance goal because they were not
able to remove the “god class”–removing it would have
required modifying too many of the software’s compo-
nents. If the architecture assessment had been con-
ducted much earlier, during the initial development,
fewer machines would have been required and the sav-
ings would have been even greater.

4.14 Summary
The architecture assessment was successful. It docu-
mented the overall end-to-end processing for mes-
sages in the current architecture. It determined that the
current architecture was viable for achieving the

desired scalability. It identified problem areas that
required correction in order to achieve the desired scal-
ability, and quantified the alternatives so that develop-
ers could select the most cost-effective solution. They
ultimately implemented the changes and were able to
meet their throughput goals.

5.0 CONFLICTS AND TRADEOFFS
Software performance is not achieved in isolation. Per-
formance objectives must be balanced with other soft-
ware quality concerns including: reliability/availability,
safety and modifiability. Sometimes, these objectives
conflict when architectural features have opposing
effects on different quality attributes. For example,
redundancy may increase availability but negatively
impact performance. Identifying the areas of the archi-
tecture where conflicts occur and quantifying their
effects makes it possible to find a workable compro-
mise.

As with performance objectives, in order to evaluate the
effect of architectural decisions on qualities such as
modifiability or reliability, it is important that the require-
ments for these attributes be stated precisely. Evaluat-
ing tradeoffs also requires that quality requirements be
prioritized. Obtaining precise quality requirements and
prioritizing them is often the most difficult part of the
process.

6.0 SUMMARY AND CONCLUSIONS
The architecture of a software system is the primary
factor in determining whether or not a system will meet
its performance and other quality goals. Architecture
assessment is a vital step in the creation of new sys-
tems and the evaluation of the viability of legacy sys-
tems for controlling the performance and quality of
systems.

This paper presented PASA, a method for performance
assessment of software architectures. It described the
method we use in a variety of application domains
including web-based system, financial applications,
and real-time systems. It described the ten steps in the
method:

1. Process Overview

2. Architecture Overview

3. Identification of Critical Use Cases

4. Selection of Key Performance Scenarios

5. Identification of Performance Objectives

6. Architecture Clarification and Discussion

7. Architectural Analysis

8. Identification of Alternatives

Figure 6: Results for Revised Message Handler

first
Stage

apply
Business

Rules

determine
andUpdate

Action

lastStage

Residence Time: 0.0069 sec

0.0002

0.0051

0.0014

0.0002
13

9. Presentation of Results

10.Economic Analysis

A case study based on an actual performance assess-
ment of a system architecture illustrated the steps in
the method as well as typical findings and cost savings
for such an assessment. In our experience, these dra-
matic savings are not uncommon.

The PASA method is evolving as we gain more experi-
ence on a variety of applications. With this experience,
we are discovering and documenting new Performance
Antipatterns [Smith and Williams 2002b]. We are also
currently codifying the results from multiple similar
assessments into some general observations about the
applicability of architectural styles to particular types of
applications [Williams and Smith in preparation].

You already know that you need architecture assess-
ments. Unfortunately, there is never enough time to do
things right. When problems occur:

• Don’t just use a band-aid (tuning alone)

• Don’t just rely on contractors or developers to
solve the problem because their intuition about
problems isn’t always accurate—you need a
quantitative, architecture oriented approach

• Lobby for an architecture assessment before
you start tuning

• Use the economic analysis results as an incen-
tive to incorporate SPE from the outset on the
next project.

7.0 REFERENCES

[Balsamo, et al. 1998] S. Balsamo, P. Inverardi, and C.
Mangano, “An Approach to Performance Evalua-
tion of Software Architectures,” Proceedings of the
First International Workshop on Software and Per-
formance (WOSP98), Santa Fe, NM, October,
1998, pp. 178-190.

[Booch, et al. 1999] G. Booch, J. Rumbaugh, and I.
Jacobson, The Unified Modeling Language User
Guide, Reading, MA, Addison-Wesley, 1999.

[Brown, et al. 1998] W. J. Brown, R. C. Malveau, H. W.
McCormick III, and T. J. Mowbray, AntiPatterns:
Refactoring Software, Architectures, and Projects
in Crisis, New York, John Wiley and Sons, Inc.,
1998.

[Buschmann, et al. 1996] F. Buschmann, R. Meunier,
H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
Oriented Software Architecture: A System of Pat-

terns, Chichester, England, John Wiley and Sons,
1996.

[Cortellesa and Mirandola 2000]V. Cortellesa and R.
Mirandola, “Deriving A Queueing Network-based
Performance Model from UML Diagrams,” Pro-
ceedings of the Second International Workshop
on Software and Performance (WOSP2000),
Ottawa, Canada, September, 2000, pp. 58-70.

[Clements 1996] P. C. Clements, “Coming Attractions
in Software Architecture,” Technical Report No.
CMU/SEI-96-TR-008, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA,
1996.

[Dowdy, et al. 1984] Lawrence W. Dowdy, Derek L.
Eager, Karen D. Gordon and Lawrence V. Saxton,
“Throughput Concavity and Response Time Con-
vexity,” Information Processing Letters, vol. 19, no.
4, pp. 209-212, 1984.

[Eager and Sevcik 1983] Derek L. Eager and Kenneth
C. Sevcik, “Performance Bound Hierarchies for
Queueing Networks,” Transactions On Computer
Systems vol. 1, no. 2, pp. 99-115, 1983.

[Gamma, et al. 1995] E. Gamma, R. Helm, R.
Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software,
Reading, MA, Addison-Wesley, 1995.

[Grassi, et al. 2000] V. Grassi, T. Vergate, and V. Cor-
tellesa, “Performance Evaluation of Mobility
Based Software Architectures,” Proceedings of
the Second International Workshop on Software
and Performance (WOSP2000), Ottawa, Canada,
September, 2000, pp. 44-46.

[Hsieh and Lam 1987]Ching-Tarng Hsieh and Simon
S. Lam, “Two Classes of Performance Bounds for
Closed Queueing Networks,” Performance Evalu-
ation, vol. 7, no. 1, pp. 3-30, 1987.

[Kazman, et al. 1998] R. Kazman, M. Klein, M. Bar-
bacci, T. Longstaff, H. Lipson, and J. Carriere,
“The Architecture Tradeoff Analysis Method,” Pro-
ceedings of the Fourth International Conference
on Engineering of Complex Computer Systems
(ICECCS98), August, 1998.

[Kazman, et al. 1996] R. Kazman, G. Abowd, L. Bass,
and P. Clements, “Scenario-Based Analysis of
Software Architecture,” IEEE Software, vol. 13, no.
6, pp. 47-55, 1996.

[Kruchten 1 9 9 5]P. B. Kruchten, “The 4+1 View Model
of Architecture,” IEEE Software, vol. 12, no. 6, pp.
42-50, 1995.
14

[Lüthi, et al. 1997] Johannes Lüthi, Shikharesh
Majumdar, Gabriele Kotsis, and Günter Haring,
“Performance Bounds for Distributed Systems
with Workload Variabilities and Uncertainties,”
Parallel Computing, vol. 22, no. 13, pp. 1789-
1806, 1997.

[Majumdar, et al. 1991] Shikharesh Majumdar, C. Mur-
ray Woodside, J. E. Neilson and Dorina C. Petriu,
“Performance Bounds for Concurrent Software
with Rendezvous, Performance Evaluation, vol.
13, no. 4, pp. 207-236, 1991.

[Pooley and King 199 9]R. Pooley and P. King, “The
Unified Modeling Language and Performance
Engineering,” IEE Proceedings-Software, vol. 146,
no. 1, pp. 2-10, 1999.

[Schmidt, et al. 2000] D. Schmidt, M. Stal, H. Ronert,
and F. Buschmann, Pattern-Oriented Software
Architecture Volume 2: Patterns for Concurrent
and Networked Objects, Chichester, England,
John Wiley and Sons, 2000.

[Shaw and Garlan 1996] M. Shaw and D. Garlan, Soft-
ware Architecture: Perspectives on an Emerging
Discipline, Upper Saddle River, NJ, Prentice Hall,
1996.

[Smith and Williams 2002b] C. U. Smith and L. G. Will-
iams, “New Software Performance Antipatterns:
more Ways to Shoot Yourself in the Foot,” submit-
ted for publication.

[Smith and Williams 2002] C. U. Smith and L. G. Will-
iams, Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software, Read-
ing, MA, Addison-Wesley, 2002.

[Smith and Williams 2001] C. U. Smith and L. G. Will-
iams, “Software Performance AntiPatterns: Com-
mon Performance Problems and Their Solutions”,
Proc. CMG, Anaheim, December 2001

[Smith and Williams 19 9 8]C. U. Smith and L. G. Will-
iams, “Performance Engineering Evaluation of
CORBA-based Distributed Systems with SPEED,”
in Computer Performance Evaluation, Lecture
Notes in Computer Science, vol. 1469, R. Puig-
janer, N. N. Savino and B. Serra, ed., Berlin,
Springer-Verlag, 1998, pp. 321-335.

[Smith and Williams 19 9 7]C. U. Smith and L. G. Will-
iams, “Performance Engineering Evaluation of
Object-Oriented Systems with SPEED,” in Com-
puter Performance Evaluation: Modelling Tech-
niques and Tools, Lecture Notes in Computer
Science, vol. 1245, R. Marie, B. Plateau, M.
Calzarossa and G. Rubino, ed., Berlin, Springer-
Verlag, 1997, pp. 135-154.

[Smith 1990]C. U. Smith, Performance Engineering of
Software Systems, Reading, MA, Addison-Wes-
ley, 1990.

[Stephens and Dowdy 1984] Lindsey E. Stephens and
Lawrence W. Dowdy, “Convolutional Bound Hier-
archies,” SIGMETRICS, pp. 120-133, 1984

[Williams and Smith 1998] L. G. Williams and C. U.
Smith, “Performance Evaluation of Software
Architectures,” Proceedings of the Workshop on
Software and Performance (WOSP98), Santa Fe,
NM, October, 1998.

[Williams and Smith 2002] L. G. Williams and C. U.

Smith, “PASASM: A Method for the Performance
Assessment of Software Architectures,” Proceed-
ings of the Workshop on Software and Perfor-
mance (WOSP2002), Rome, Italy, July, 2002.

[Williams and Smith in preparation] L. G. Williams and
C. U. Smith, “Performance Characteristics of
Common Architectural Styles: Pipe-and-Filter and
Client-Server,” manuscript in preparation.
15

