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Abstract. Distributed systems were once the exception, constructed only rarely and with great difficulty by
developers who spent significant amounts of time mastering the technology. Now, as modern software technologies
have made distributed systems easier to construct, they have become the norm. Unfortunately, many distributed
systems fail to meet their performance objectives when they are initially constructed. Others perform adequately
with a small number of users but do not scale to support increased usage. These performance failures result in
damaged customer relations, lost productivity for users, lost revenue, cost overruns due to tuning or redesign, and
missed market windows.

Our experience is that most performance failures are due to a lack of consideration of performance issues early in
the development process, in the architectural phase. This paper discusses assessment of the performance characteristics
of distributed software architectures using the Software Performance Engineering (SPE) approach. We describe the
information required to perform such assessments, particularly the information about synchronization points and
types of synchronization mechanisms, and the modeling approach. The case study demonstrates how to construct
performance models for distributed systems and illustrates how simple models of software architectures are sufficient
for early identification of performance problems.
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1. Introduction. Distributed systems were once the exception, constructed only rarely and
with great difficulty by developers who spent significant amounts of time mastering the technol-
ogy. Now, as modern software technologies have made distributed systems easier to construct, they
have become the norm. The explosion of web applications is just the tip of the distributed sys-
tems iceberg. Distributed applications include embedded real-time systems, client/server systems,
traditional business applications and integrated legacy systems.

Unfortunately, many distributed systems fail to meet their performance objectives when they
are initially constructed. Others perform adequately with a small number of users but do not scale
to support increased usage. These performance failures result in damaged customer relations, lost
productivity for users, lost revenue, cost overruns due to tuning or redesign, and missed market
windows. In the case of web applications, these failures can also be embarrassingly public.

Our experience is that most performance failures are due to a lack of consideration of perfor-
mance issues early in the development process, in the architectural phase. Poor performance is
more often the result of problems in the architecture or design rather than the implementation. As
Clements points out:

”Performance is largely a function of the frequency and nature of inter-component communica-
tion, in addition to the performance characteristics of the components themselves, and hence can be
predicted by studying the architecture of a system.” [8]

This means that performance problems are actually introduced early in the development process.
However, most organizations ignore performance until integration testing or later. With pressure to
deliver finished software in shorter and shorter times, their attitude is: ”Let’s get it done. If there
is a performance problem, we’ll fix it later.” Thus, performance problems are not discovered until
late in the development process, when they are more difficult (and more expensive) to fix.

The following quote from Auer and Beck is typical of this ”fix-it-later” attitude:
Performance myth: ”Ignore efficiency through most of the development cycle. Tune performance

once the program is running correctly and the design reflects your best understanding of how the code
should be structured. The needed changes will be limited in scope or will illuminate opportunities for
better design.” [2]

”Tuning” code to improve performance is likely to disrupt the original design, negating the
benefits obtained from a carefully crafted architecture. It is also unlikely that ”tuned” code will
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ever equal the performance of code that has been engineered for performance. In the worst case, it
will be impossible to meet performance goals by tuning, necessitating a complete redesign or even
cancellation of the project.

The ”fix-it-later” attitude is rooted in the view that performance is difficult to predict and that
the models needed to predict the performance of software (particularly a distributed system) are
complex and expensive to construct. Predicting the performance of a distributed system can, in
fact, be difficult. The functionality of distributed systems is often decentralized. Performing a given
function is likely to require collaboration among components on different nodes in the network. If
the interactions use middleware, such as CORBA, the models can become even more complex.

Despite these difficulties, our experience is that it is possible to cost-effectively engineer dis-
tributed systems that meet performance goals. By carefully applying the techniques of software
performance engineering (SPE) throughout the development process, it is possible to produce dis-
tributed systems that have adequate performance and exhibit other desirable qualities, such as
reusability, maintainability, and modifiability.

SPE is a method for constructing software systems to meet performance and scalability objec-
tives [27]. Performance refers to the response time or throughput as seen by the users. The SPE
process begins early in the software life cycle and uses quantitative methods to identify a satisfactory
architecture and to eliminate those that are likely to have unacceptable performance. SPE continues
throughout the development process to: predict and manage the performance of the evolving soft-
ware, monitor actual performance against specifications, and report and manage problems if they
are identified. SPE begins with deliberately simple models that are matched to the current level
of knowledge about the emerging software. These models become progressively more detailed and
sophisticated, as more details about the software are known. SPE methods also cover performance
data collection, quantitative analysis techniques, prediction strategies, management of uncertain-
ties, data presentation and tracking, model verification and validation, critical success factors, and
performance design principles, patterns, and antipatterns.

This paper illustrates the construction of simple performance models of distributed systems.
Model solutions are computed using the tool SPE•ED(tm) [1]. SPE•ED is a performance modeling
tool that supports the SPE process described in [27][31]. SPE•EDs focus on software processing and
automatic model generation make it easy to evaluate distributed architecture and design alternatives.
Other features, such as the SPE project database and presentation and reporting features, support
aspects of the SPE process in addition to modeling.

We begin with a review of related work. We then present an overview of the SPE models and
a description of the SPE•ED tool. A case study illustrates how to use the process and models to
evaluate distributed system architecture alternatives.

2. Related Work. This work brings together three separate lines of inquiry. The first is the
evaluation of the performance of distributed systems. The second is the evaluation of software
architectures, and the third is the use of software model notations to create performance models.
The synthesis is a focus on the early evaluation of distributed system architectures as a means of
identifying and mitigating performance risks.

Work on the performance of distributed systems and web applications has generally focused
on the system point of view. Examples include: [9][13][20][33][36]. These approaches focus on the
performance of the system as a whole and evaluate the overall performance of the system. Our
approach focuses on the software architecture and evaluates the overall effect of alternative software
architectures. This means that our models must explicitly represent software processing steps that
reflect the interactions among distributed systems. Both Hills et. al. [14] and Szumilas et. al, [32]
used a slightly different system approach. They looked at implementation architecture alternatives
such as the assignment of processes to processors, and identifying a feasible strategy for achieving
performance objectives.

Some earlier work has addressed synchronization from the software point of view: [24][23][27][28].
All these approaches modeled only synchronous communication whereas this work addresses 4 typical
types of synchronization. Our approach also differs in its use of a hybrid modeling approach: simple
approximation techniques for early analysis combined with simulation solutions for later analysis of
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more detailed models.
Scratchley and Woodside have proposed a similar approach to evaluate concurrency options in

software specifications. They add performance annotations to use case maps, and generate a virtual
implementation model from them [26]. The generated models can be used to study concurrency de-
sign alternatives such as multi-processing and multi-threading, and the feasibility of meeting quality
of service objectives. This is a powerful technique for generating and evaluating advanced models
of concurrency for systems that match their design paradigm, such as concurrent communication
applications. They do not provide the simpler, approximate models for early system evaluation.

Work on evaluation of software architectures has focused on early evaluation of software architec-
tures to reveal problems at a point in the software development process where they can be corrected
most easily and economically. Notable in this area is the work of Kazman and co-workers [16][17].
Their approach is scenario-based and considers various stakeholders in the system (e.g., users, system
administrators, maintainers) and develops usage scenarios from their various points of view. Their
scenarios are expressed informally as brief textual descriptions that capture uses of the system that
are related to quality attributes, such as ease of modification. The architecture is then evaluated on
how much effort is required to satisfy the scenarios.

Our work differs from that of Kazman and co-workers in its focus on performance and its use
of more rigorous scenario descriptions. While Kazman, et. al., apply their technique to a variety
of quality attributes, including performance, as noted above, they use informal, natural language
descriptions of scenarios.

Other, related, work on performance evaluation of software architectures includes that of Bal-
samo, et. al. [3] and Lung, et. al. [19]. The work of Balsamo, et. al. compares the relative
performance of software architectures specified in the Chemical Abstract Machine (CHAM) formal-
ism. Queueing model parameters (the arrival rate distributions and service time distributions) are
represented symbolically and the model solutions provide relative performance measures for the ar-
chitectures they consider. By contrast, our approach provides a framework for estimating the model
parameters, so it produces quantitative results rather than symbolic results. Lung, et.al. propose a
process similar to that described in [29] that is adapted to their specific architecture notations, and
describe results achieved using it.

Work on the creation of performance models from design notations includes [18], [21], [29]. All
these approaches require extensions to include the performance specifications. The models produced
differ in their ability to predict distributed system performance.

This paper illustrates model solutions using the SPE•ED(tm) performance engineering tool [1][29][30].
A variety of other performance modeling tools are available, such as [5][4][11][12][22][34]. However,
the approach described here will need to be adapted for tools that do not use execution graphs as
their modeling paradigm.

3. SPE Models for Distributed Systems.

3.1. Scenarios. The SPE process begins with the system’s use cases [6]. Here we focus on the
scenarios that describe the use cases. A scenario is a sequence of actions describing the interactions
between the system and its environment (including the user) or between the internal objects involved
in a particular execution of the system. The scenario shows the objects that participate and the
messages that flow between them. A message may represent either an event or an invocation of one
of the object’s methods (operations). Performance scenarios are the subset of the use case scenarios
that are executed frequently, or those that are critical to the perceived performance of the system.
We use Unified Modeling Language (UML) sequence diagrams, augmented with features from the
message sequence chart (MSC) standard [15], to represent performance scenarios.

To illustrate the notation, we will use a simple automated teller machine (ATM). Figure 3.1
illustrates a high-level scenario for the ATM. In a UML sequence diagram, each object that partic-
ipates in the scenario is represented by a vertical line or axis. The axis is labeled with the object
name (e.g., anATM). The vertical axis represents relative time that increases from top to bottom
(sequence diagrams do not use a representation of absolute time). The horizontal arrows represent
interactions between objects (events or operation invocations).

The rectangular areas in Figure 3.1 labeled ”loop” and ”alt” are from the MSC standard. They
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Fig. 3.1. ATM Sequence Diagram
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requestPIN

loop *[until done]
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terminateSession

aPIN
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denote repetition and alternation. The scenario indicates that the user may repeatedly select a
transaction, which may be a deposit, a withdrawal, or a balance inquiry. The rounded rectangles
(also from the MSC standard) are ”references” which refer to other sequence diagrams. The use
of references allows horizontal decomposition of scenarios. The sequence diagram corresponding to
processWithdrawal is shown in Figure 3.2.

Fig. 3.2. Expansion of processWithdrawal

: User : ATM : HostBank

requestAccount

requestAmount

transactionRequest
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Additional extensions to the sequence diagram notation are in [31]. We conclude this section with
some extensions for modeling synchronization in distributed systems. We will focus on four types
of communication and synchronization that are typically supported in middleware: * synchronous,
* asynchronous, * deferred synchronous, and * asynchronous callback communication.

You can show synchronous and asynchronous messages in the UML using different types of
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arrowheads. Figure 3.3 shows a synchronous communication using a filled arrowhead for the message
and a return (dashed) arrow for the reply. Figure 3.4 shows an asynchronous communication using
a half-stick arrowhead. Both of these examples use standard UML notation.

Fig. 3.3. Synchronous Communication

: Client : Server

 

Fig. 3.4. Asynchronous Communication

: Client : Server

 

We have also found it useful to model deferred synchronous communication in distributed sys-
tems (for example CORBA-based systems). This type of communication is similar to a synchronous
interaction in that the client sends a message to the server and expects a reply. In this case, however,
the client sends the message and continues processing. Then it requests the result later. This type
of interaction is shown in Figure 3.5 using an extension to the sequence diagram notation. The
extension is the addition of a dashed section of the activation bar to show that the client has a
potential delay while the server finishes responding to the request.

Fig. 3.5. Deferred Synchronous Communication

: Client : Server

 

Similar behavior can be achieved in systems that do not support deferred synchronous communi-
cation with asynchronous callback as in Figure 3.6. In this case an asynchronous call is sent and the
client continues processing. When the server completes the request it sends another asynchronous
call to the client.

3.2. SPE Model Overview. Software performance engineering is a quantitative approach to
constructing software systems that meet performance objectives. It incorporates models for repre-
senting and predicting performance as well as a set of analysis methods, techniques for gathering
data, and other steps mentioned earlier. SPE uses deliberately simple models of software processing
with the goal of using the simplest possible model that identifies problems with the system architec-
ture, design, or implementation plans. These models are easily constructed and solved to provide
feedback on whether the proposed software is likely to meet performance goals. As the software
process proceeds, the models are refined to more closely represent the performance of the emerging
software.

The precision of the model results depends on the quality of the estimates of resource require-
ments. Because these are difficult to estimate early in the software process, SPE uses adaptive
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Fig. 3.6. Asynchronous Callback

:Client :Server

 

strategies, such as upper- and lower-bounds estimates and best- and worst-case analysis to manage
uncertainty. For example, when there is high uncertainty about resource requirements, analysts use
estimates of the upper and lower bounds of these quantities. Using these estimates, analysts produce
predictions of the best-case and worst-case performance. If the predicted best-case performance is
unsatisfactory, they seek feasible alternatives. If the worst-case prediction is satisfactory, they pro-
ceed to the next step of the development process. If the results are somewhere in-between, analyses
identify critical components whose resource estimates have the greatest effect and focus on obtaining
more precise data for them. A variety of techniques can provide more precision, including: further
refining the design and constructing more detailed models or constructing performance benchmarks
and measuring resource requirements for key components.

Two types of models provide information for design assessment: the software execution model
and the system execution model. The software execution model represents key aspects of the software
execution behavior. It is constructed using an execution graph [27] to represent each performance
scenario. Nodes represent components of the software; arcs represent control flow. The graphs are
hierarchical with the lowest level containing complete information on estimated resource require-
ments. Figure 3.7 shows the execution graph corresponding to the user interaction scenario from
Figures 3.1 and 3.2. The graph shows that, following getCardInfo and getPIN, the ATM will repeat
the processTransaction node n times. Both processTransaction and terminateSession are expanded
nodes; they are expanded in a separate graph. Figure 3.8 shows the expansion of processTransaction.

Fig. 3.7. ATM Execution Graph

getCardInfo

getPIN

n

process
Transaction

terminate
Session

 

Execution graphs for distributed system models have other types of nodes to represent the
synchronization points and the type of synchronization. They are illustrated in the case study.

Solving the software model provides a static analysis of the mean, best- and worst-case response
times. It characterizes the resource requirements of the proposed software alone, in the absence of
other workloads, multiple users or delays due to contention for resources. If the predicted perfor-
mance in the absence of these additional performance-determining factors is unsatisfactory, then
there is no need in constructing more sophisticated models.

If the software execution model indicates that there are no problems, analysts proceed to con-
struct and solve the system execution model. This model is a dynamic model that characterizes the
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Fig. 3.8. Expansion of processTransaction
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software performance in the presence of factors, such as other workloads or multiple users that could
cause contention for resources. The results obtained by solving the software execution model provide
input parameters for the system execution model. Solving the system execution model provides the
following additional information:

• more precise metrics that account for resource contention
• sensitivity of performance metrics to variations in workload composition
• effect of new software on service level objectives of other systems
• identification of bottleneck resources
• comparative data on options for improving performance via: performance scenario changes,

software changes, hardware upgrades, and various combinations of each
The system execution model represents the key computer resources as a network of queues.

Queues represent components of the environment that provide some processing service, such as
processors or network elements. Environment specifications provide device parameters (such as CPU
size and processing speed). Workload parameters and service requests for the proposed software come
from the resource requirements computed by solving the software execution model. The results
of solving the system execution model identify potential bottleneck devices and correlate system
execution model results with software components.

If the model results indicate that the performance is likely to be satisfactory, developers proceed.
If not, the model results provide a quantitative basis for reviewing the proposed design and evaluating
alternatives. Feasible alternatives can be evaluated based on their cost-effectiveness. If no feasible,
cost-effective alternative exists, performance goals may need to be revised to reflect this reality.

This discussion has outlined the SPE process for one early design-evaluation cycle. These steps
repeat throughout the development process. At each phase, the models are refined based on the
more detailed design and analysis objectives are revised to reflect the concerns that exist for that
phase [27]. Early models approximate delays for synchronization among distributed processes. Later,
advanced system execution models quantify the synchronization delays and provide additional data
for evaluating the distributed systems.

3.3. Deriving Execution Graphs from Sequence Diagrams. The performance analysis
techniques, as well as the SPE•ED tool (Section 4), are based on execution graphs. Thus, a key
step in the SPE process is the derivation of execution graphs from sequence diagrams. Currently,
this is a manual process. The close correspondence between sequence diagrams and execution graphs
suggests that an automated translation might be possible, however.

For single-threaded scenarios or scenarios with sequential flow of control, going from a sequence
diagram to an execution graph is straightforward. For scenarios that involve multiple threads of
control or distributed objects, a little more effort is needed to identify operations that serialize and
account for communication and synchronization delays. In either case, the process of translating a
sequence diagram to an execution diagram is similar.

Each message received by an object triggers an action - either an operation or a state machine
transition. The simplest way to construct an execution graph from a sequence diagram is to follow
the message arrows through the performance scenario and make each action a basic node in the
execution graph. However, in many cases, individual actions are not interesting from a performance
perspective and several of them may be combined into a single basic node. Alternatively, you can
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use an expanded node to summarize a series of actions and provide details of the sequence of actions
in its subgraph.

If you use the MSC extensions discussed in Section 3.1, repetition and case nodes are easy to
identify. If not, you will need to walk through the scenario to identify repetitions. To find alternative
processing steps, you will probably need to look at different scenarios from the same use case that
represent alternative uses of the system.

A reference is most easily rendered as an expanded node with the execution graph corresponding
to the sequence diagram that it points to in the subgraph.

4. SPE•ED Overview. This section provides a brief overview of the features of the SPE tool,
SPE•ED, that make it appropriate for distributed (and other) system evaluations throughout their
development cycle.

4.1. Focus. SPE•ED’s focus is the software performance model. Users create graphical mod-
els of envisioned software processing and provide performance specifications by creating and spec-
ifying execution graphs. Queueing network models are automatically generated from the software
model specifications. A combination of analytic and simulation model solutions identify potential
performance problems and software processing steps that may cause the problems. SPE•ED facil-
itates the creation of (deliberately) simple models of software processing with the goal of using the
simplest possible model that identifies problems with the software architecture, design, or imple-
mentation plans. Simple models are desired because in the early life cycle phase in which they are
created: * developers seldom have exact data that justifies a more sophisticated model, * they need
quick feedback to influence development decisions, * they need to comprehend the model results,
especially the correlation of the software decisions to the computer resource impacts.

4.2. Model description. Users create the model with a graphical user interface streamlined to
quickly define the software processing steps. The user’s view of the model is a scenario, an execution
graph of the software processing steps [27]. Software scenarios are assigned to the facilities that
execute the processing steps. Models of distributed processing systems may have many scenarios
and many facilities.

Users specify software resource requirements for each processing step. Software resources may
be the number of messages transmitted, the number of SQL queries, the number of SQL updates,
etc. depending on the type of system to be studied and the key performance drivers for that system.
A performance specialist provides overhead specifications that specify an estimate of the computer
resource requirements for each software resource request. These are specified once and re-used for
all software analysis that executes in that environment.

4.3. Model solution. SPE•ED produces analytic results for the software models, and an
approximate, analytic mean-value-analysis solution of the generated queueing network model. A
simulation solution is used for generated queueing network models with multiple software scenar-
ios executing on one or more computer system facilities. SPE•ED uses an embedded version of
Mesquite Software’s CSIM modeling tool to solve the models [25]. Thus SPE•ED supports hybrid
solutions - the user selects the type of solution appropriate for the development life cycle stage
and thus the precision of the data that feeds the model. There is no need for a detailed, lengthy
simulation when only rough guesses of resource requirements are specified.

4.4. Model results. The results reported by SPE•ED are the end-to-end response time,
the elapsed time for each processing step, the device utilization, and the amount of time spent at
each computer device for each processing step. This identifies both the potential computer device
bottlenecks, and the portions of the device usage by processing step (thus the potential software
processing bottlenecks).

Model results are presented both with numeric values and color coding that uses cool colors to
represent relatively low values and hot colors (yellow and red) calling attention to relatively high
values. Up to four sets of results may be viewed together on a screen. This lets users view any
combination of performance metrics for chosen levels in the software model hierarchy, and even
compare performance metrics for design or implementation choices. An export feature lets users
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copy model results and paste them into word processing documents and presentation packages, or
write out results for charting packages to create custom charts for reports.

4.5. Application areas. SPE•ED is intended to model software systems under development,
although it may also be used for existing software systems. It may be any type of software: all types
of software applications including web applications, operating systems, or database management
systems. The software may execute on any hardware/software platform combination. The software
may execute on a uniprocessor or in a distributed or client/server environment.

5. Case Study. This case study is from an actual study, however, application details have
been changed to preserve anonymity. The software supports an electronic virtual storefront, eStuff.1
Software supporting eStuff has components to take customer orders, fulfill orders and ship them
from the warehouse, and, for just-in-time shipments, interface with suppliers to obtain items to
ship. The heart of the system is the Customer Service component that collects completed orders,
initiates tasks in the other components, and tracks the status of orders in progress.

Fig. 5.1. New order scenario
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warehouse
{location = WHMainframe}

purchasing

takeCustomerOrder

ack

loop *[each item]

getOrderData

orderData

workAlert

getDetails

workDetails

getOrderData

orderData

workProgress

isAvail(item)

status

opt [not inStock]

workAlert

getDetails
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5.1. Approximate Model. The use case we consider is processing a new order (Figure 5.1).
The performance objective for the scenario is to complete the order processing in 30 seconds and to
support an arrival rate of 1 order every 10 seconds.

It begins with TakeCustOrder, a reference to another, more detailed sequence diagram. An
ACK is sent to the customer, and the order processing begins. In this scenario we assume that
a customer order consists of 50 individual items. The unit of work for the TakeCustOrder and
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CloseCustOrder components is the entire order; the other order-processing components handle each
item in the order separately; the sequence diagram shows this repetition with a loop symbol. The
similar symbol labeled ”opt” represents an optional step that may occur when eStuff must order the
item from a supplier.

Each column in Figure 5.1 represents an independent process, so the columns are modeled
separately. The first three columns each execute on their own facility; the warehouse and purchasing
processes share a facility.

Fig. 5.2. Execution Graph: ProcessItemOrder Expansion
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Figure 5.3 shows the execution graph for the CustomerService column in the scenario in Fig-
ure 5.1. Everything inside the loop is in the expanded node, ProcessItemOrder. Its details are
in Figure 5.2. Figure 5.2 shows the synchronization nodes in the ProcessItemOrder step. It first
receives the NewOrder message and immediately replies with the acknowledgement message thus
freeing the calling process. Next it makes a synchronous call to GetOrderData and waits for the
reply. The availability check is modeled with a synchronous call to WH:IsAvail. The two WorkAlert
processing steps are also expanded; their details are not shown here. This software model depicts
only the CustomerService processing node; we approximate the delay time to communicate with the
other processing nodes.

The next step is to specify resource requirements for each processing step. The key resources in
this model are the CPU time for database and other processing (specified in WorkUnits), the number
of I/Os for database and logging activities, the number of messages sent among processors (and the
associated overhead for the middleware), and the estimated delay in seconds until the message-
reply is received. These values are shown in Figures 5.3 and 5.2. They are best-case estimates
derived from performance measurement experiments. They may also be estimated in a performance
walkthrough [27].

Analysts specify values for the software resource requirements for processing steps. The com-
puter resource requirements for each software resource request are specified in an overhead matrix
stored in the SPE database. This matrix represents each of the hardware devices in each of the dis-
tributed processors, connects the software model resource requests to hardware device requirements,
and incorporates any processing requirements due to operating system or network overhead (see [29]
for a detailed description of the overhead matrix).
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Fig. 5.3. Execution Graph: CustomerService: New Order
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Figure 5.4 shows the best-case solution with one user and thus no contention for computer
devices. The overall time is at the top, and the time for each processing step is next to the step.
The color bar legend in the upper right corner shows the values associated with each color; defining
an overall performance objective sets the upper bound. Values higher than the performance objective
will be red, lower values are respectively cooler colors. The ’Resource usage’ values below the color
bar legend show the time spent at each computer device. Of the 347 total seconds for the end-to-
end scenario, 255 seconds is due to the delay for customer interactions and delay for distributed
processes.

Fig. 5.4. Best-case elapsed time.
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The end-to-end time is 347 seconds, most of it is in ProcessItemOrder (the value shown is for all
50 items). Results for the ProcessItemOrder subgraph (not shown) indicate that processing for each
item takes approximately 6.9 seconds, most of that is in the ShipItem processing step. Other results
(not shown) indicate that 5.1 seconds of the 6.9 seconds is due to estimated delay for processing
on the other facilities. Investigation also shows that network congestion prevents the system from
supporting the desired throughput. These results reflect the elapsed time without contention (i.e.
with only one user).

From these results we calculate the limits on scalability by calculating the maximum arrival rate
that the system can support:

1. Find the device with the maximum resource usage (excluding delay devices) - In this case
it is the network, GlNet with 42.65 seconds.
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2. The maximum arrival rate is the reciprocal of its demand - 1/42.65 seconds or 0.023 orders
per second.

Clearly the system will not scale to support the desired arrival rate 0.1 orders per second.
Analysts can evaluate potential solutions by modifying the software execution model to reflect

architecture alternatives. The architecture of this system is largely determined by the constraint
that the order entry, warehouse, and purchasing components are existing legacy applications. Thus
the architecture is essentially a Stove Pipe [7]. The communication follows the Observer pattern [10].
It uses a lightweight communication: a workAlert message is sent notifying the receiver that there
is work to be done, but without specifics of the task. The receiver must request information from
customer service about the details of the work (getDetails), then request information from order
entry on the specifics of the order to be processed (getOrderData). One alternative is to send the
details of the work and the order along with the workAlert. This would eliminate many of the
requests, but the messages would be larger. The change to the software model is relatively simple:
we delete the synchronous calls for getOrderData and getDetails, and increase the time to transmit
the messages. This alternative reduces the elapsed time for one user to 331 seconds, which is still
not acceptable. It improves scalability because the network demand is reduced to 30.5 seconds, but
not enough to meet the performance objective.

Fig. 5.5. Revised System at 0.1 jobs per second

triggerOrder
Processing

eachItem

closeCust
Order
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14.69 secprocess
ItemOrder
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We select another architecture alternative that processes work orders as a group rather than
individual items in an order. The changes to the software execution model for this alternative are
relatively minor - the number of loop repetitions is reduced to 2 (one for orders ready to ship, the
other for orders requiring back-ordered items), and the resource requirements for steps in the loop
change slightly to reflect requirements to process a group of items. This alternative yields a response
time of 15 seconds with the desired throughput of 0.1 jobs per second as shown in Figure 5.5.

Thus, the overhead and delays due to process coordination were a significant portion of the
total end-to-end time to process a new order. Improvements resulted from processing batches of
items rather than individual items. These simple models provide sufficient information to identify
problems in the architecture before proceeding to the advanced system execution model. It is easy
and important to resolve key performance problems with simple models before proceeding to the
advanced models described next.

5.2. Advanced System Execution Model. This section illustrates the creation and evalu-
ation of the detailed models of synchronization. Figure 5.1 shows that all the synchronization steps
are either asynchronous or synchronous. Deferred synchronous calls and asynchronous callback are
only useful when the results are not needed for the next processing steps. Deferred synchronous
calls and asynchronous callback may also be more complex to implement. Thus, it is sensible to
plan synchronous calls unless the models indicate that deferred synchronous calls result in significant
improvements.

Figure 5.6 shows the processing that occurs on the Warehouse facility. It receives the asynchro-
nous request from the CS facility, makes a synchronous call to CS:getDetails, makes a synchronous
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Fig. 5.6. WH:WorkAlert

getWorkAlert

CS:getDetails

OE:getData

CS:updateStatus

 
Table 5.1

Advanced System Model Results

Scenario Response Time (Sec.) TPut Queue
Mean Min Max Variance Mean Max Time

CS:NewOrder 8.2 0.1 64.5 50.2 0.2
CS:NewOrder(NA) 8.6 0.1 72.8 51.4 0.2

OE:OrderData .2 0 4.0 0.1 1.0 0.304 8 0.31
CS:WorkDetails .2 0 4.3 0.1 0.6 0.160 2 0.27
CS:UpdStatus .2 0 4.7 0.1 0.6 0.014 4 0.02
WH:WorkAlert 1.8 0.1 11.6 1.6 0.4 1.741 28 4.40
P:WorkAlert 2.0 0.1 13.1 1.8 0.2 0.217 9 1.10

call to OE:getData, then (after the order is shipped) makes an asynchronous call to CS StatusUp-
date.

Table 5.2 shows the advanced system model results. The maximum queue length and the queue
time for WH:WorkAlert suggests that more concurrent threads might be desirable for scalability. The
simulation results can also reflect problems due to ”lock-step” execution of concurrent processes. For
example, note that the mean response time for P:WorkAlert is slightly higher than for WH:WorkAlert
even though they execute the same processing steps and P:WorkAlert executes less frequently (see
throughput values). This is because the asynchronous calls to WH:WorkAlert and to P:WorkAlert
occur very close to the same time and cause both processes to execute concurrently on the same
facility. This introduces slight contention delays for the process that arrives second (P:WorkAlert).
In this case study the performance effect is not serious, but it illustrates the types of performance
analysis important for this life cycle stage and the models that permit the analysis.

It is difficult to validate models of systems that are still under development. Many changes
occur before the software executes and may be measured, and the early life cycle models are best-
case models that omit many processing complexities that occur in the ultimate implementation.
Nevertheless, the results are sufficiently accurate to identify problems in the software plans and
quantify the relative benefit of improvements. In this study, the models successfully predicted
potential problems in the original architecture due to network activity.

Note that most of the useful results in early life cycle stages come from the approximate software
model. For example, the amount of communication and the synchronization points in the architec-
ture and design, the assignment of methods to processes, assignment of processes to processors,
an approximate number of threads per process, etc., can all be evaluated with the simpler models.
Likewise, it is easier to evaluate the simpler, visual results than a complex table like Table 5.2 to
identify problems and potential solutions. These are the reasons that the SPE approach advocates
the use of simple models early in development.
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6. Summary and Conclusions. This paper has described a systematic approach to the per-
formance engineering of distributed software systems. A systematic approach to performance is
critical to preventing performance failures. Performance failures may result in damaged customer
relations, lost productivity for users, lost revenue, cost overruns due to tuning or redesign, missed
market windows. In the worst case, it may be necessary to completely re-design the product or even
cancel the project.

Distributed systems offer unique challenges for performance engineering due to the complexity
of interactions between components and the use of middleware. However, our experience has shown
that it is possible to cost-effectively engineer distributed systems that meet performance goals. This
paper has described the process of software performance engineering for distributed systems and
illustrated the process with a simple case study.

The case study demonstrated how to construct performance models for distributed systems
and illustrated that simple models of software architectures are sufficient for early identification of
performance problems. It demonstrated that it is relatively quick and easy to construct the software
performance models with an SPE tool such as SPE•ED. It also showed that it is easy to evaluate
architecture and design tradeoffs, and to evaluate system scalability before the software construction
begins.

This work is part of a larger project to make it easier for developers to perform initial perfor-
mance assessments. One of the principal barriers to the widespread acceptance of SPE is the gap
between the software developers who need performance assessments and the performance specialists
who have the skill to conduct comprehensive performance engineering studies with today’s modeling
tools. Thus, extra time and effort are required to coordinate the design formulation and the design
analysis. This limits the ability of developers to explore design alternatives. The matching of Use
Case scenarios and performance scenarios, together with the use of a tool, such as SPE•ED, that
automates key aspects of the SPE process represent a significant step toward achieving this goal.

As noted in Section 3, the translation of scenarios to execution graphs is currently a manual
process. However, the close correspondence between scenarios as expressed in sequence diagrams
(with MSC extensions) and execution graphs suggests that an automated translation may be possible.
A future project will explore this possibility. A previous project developed an SPE meta-model that
defines the information requirements for SPE [35]. The SPE meta-model can be used by CASE tool
vendors to add the capability to collect performance data as part of the design information. By
collecting performance data within the design tool and automatically translating the design models
to execution graphs, it will be possible to export data from the CASE tool to any SPE tool that
supports the meta-model. Thus CASE tools need not replicate the performance expertise already
available. This offers a more cost-effective approach to supporting SPE. Our other future work will
address performance patterns and antipatterns, the specification of performance requirements, and
additional tool features to automate SPE evaluations.
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