Copyright © 2004, Software Engineering Research and Performance Engineering Services. All rights reserved.

Web Application Scalability:
A Model-Based Approach

Lloyd G. Williams, Ph.D.
Software Engineering Research
264 Ridgeview Lane
Boulder, Colorado 80302
(303) 938-9847
boulderlgw@aol.com

Connie U. Smith, Ph.D.
Performance Engineering Services
PO Box 2640
Santa Fe, New Mexico, 87504-2640
(505) 988-3811
http://www.perfeng.com/

Scalability is one of the most important quality attributes of today’s software systems. Yet,
despite its importance, scalability in applications is poorly understood. This paper presents
a model-based view of scalability in Web and other distributed applications that is aimed at
removing some of the myth and mystery surrounding this important software quality. We
review four models of scalability and show how they relate to Web and other distributed

applications. The applicability of these models is demonstrated with a case study.

INTRODUCTION

Web and other distributed software systems are
increasingly being deployed to support key aspects of
businesses including sales, customer relationship
management (CRM), and data processing. Examples
include: online shopping, processing insurance claims,
and processing financial trades. Many of these sys-
tems are deployed on the Web or on dedicated net-
works using Web technologies such as J2EE.

As these businesses grow, the systems that support
their functions also need to grow to support more
users, process more data, or both. As they grow, it is
important to maintain their performance (responsive-
ness or throughput) [Smith and Williams 2002]. Poor
performance in these applications often translates into
substantial costs. Customers will often shop elsewhere
rather than endure long waits. Slow responses in CRM
applications mean that more customer-service repre-
sentatives are needed. And, failure to process financial
trades in a timely fashion can result in statutory penal-
ties as well as lost customers.

These forces combine to make scalability one of the
most important quality attributes of today’s software
systems. Yet, despite its importance, scalability in
applications is poorly understood and there is no gen-
erally accepted definition of scalability. In this paper, we
will use the following definition:

Scalability is a measure of an application system’s ability
to—without modification—cost-effectively provide
increased throughput, reduced response time and/or sup-
port more users when hardware resources are added.

Scalability is a system property. The software architec-
ture is a key factor in determining scalability. For exam-
ple, if the software architecture is not able to use
additional resources to increase throughput the system
will not be scalable. The choice of execution environ-
ment is also very important. As we will see, the same
workload executed on two different platforms can
exhibit significantly different scalability properties.

Scalability in Web and other distributed systems is a
complex problem. Removing a bottleneck changes the
dynamics of the system and a different bottleneck may
emerge to impose new limitations on the scalability.
Thus, it is necessary to reevaluate the behavior of the
system after making changes.

This paper presents a model-based view of scalability
in Web and other distributed applications. It is aimed at
removing some of the myth and mystery surrounding
this important software quality. It reviews previous work
on scalability and shows how it relates to distributed
Web applications. This paper also provides a simple
demonstration that extrapolations of “near-linear”
results are likely to overestimate scalability. Finally, it
offers a reformulation of Gustafson’s Law that is more
appropriate for evaluating Web application scalability
and demonstrates that this law is applicable to some
Web applications.

The analyses described here are part of the PASASM
approach to the performance assessment of software
architectures [Williams and Smith 2002]. They are
employed in situations where scalability is a concern

and where the
obtained.

required measurements can be

We begin with a motivating example followed by a
review of scalability measures and models. A simple
case study then illustrates how these models apply to
Web applications.

MOTIVATION

Consider the following data (published on the Web) for
horizontal scalability of a sample application developed
using commercial Web server software.

Table 1: Horizontal Scaling Data

Number | Transactions
of Nodes | per Second
1 66.6
2 126.4
3 178.2
4 235.6

The report also contains the statement: “Multiple Web
servers scale near-linearly (80—90%) at this level using
[Product X].” While this statement is, at a casual
glance, true it is also potentially dangerously mislead-
ing. A straightforward extrapolation to higher numbers
of processors would give the scalability shown by the
dashed line in Figure 1.

2,000)
-
-
///
1,500 -
5 g
2 e
2 1,000 A 7
S -
500 - =
0 .
0 5 10 15 20 25 30 35

Number of Nodes

Figure 1: Extrapolated Scaling

This type of extrapolation is all too common in our
experience. However, as we will see, the actual scal-
ability of this system is more likely to follow the solid
curve. The difference between these two predictions is
significant. It could mean the difference between suc-
cessful deployment of the application and financial
disaster.

This example underscores the importance of obtaining
a thorough understanding of the scalability characteris-
tics of a system before committing resources to its
expansion. One way to accomplish this is to deter-

mine—through analysis of measured data—whether
the behavior of the system fits that of a known model of
scalability. Once there is a degree of confidence in how
well a model describes the system, extrapolations such
as the one above become less risky.

SPEEDUP AND SCALEUP

Speedup is a measure of the reduction in time required
to execute a fixed workload as a result of adding
resources such as processors or disks. Speedup is the
most common metric for evaluating parallel algorithms
and architectures. Scaleup, on the other hand, is a
measure of the increase in the amount of work that can
be done in a fixed time as a result of adding resources.
Scaleup is a more relevant metric for Web applications
where the principal concern is whether we can process
more transactions or support more users as we add
resources.

Although they might appear to be very different met-
rics, speedup and scaleup are really two sides of the
same coin. Clearly, if we can execute a transaction
more quickly, we can execute more transactions in a
given amount of time. More formally, the speedup is
given by:

_ T
Sp) = =
® 1)
where T(1) is the time required to perform the work with
one processor and T(p) is the time required to perform
the same amount of work with p processors.

Scaleup may be expressed as a ratio of the capacity
with p processors to the capacity with one processor.
This ratio is sometimes known as the scaling factor. It
has also been called the relative capacity, C(p)
[Gunther 2000]. If we use the maximum throughput as
a measure of the capacity, we can express the scaling
factor or relative capacity as:

Clp) = X, D

where Xmax(1) is the maximum capacity with one pro-
cessor and Xmax(p) is the maximum capacity with p
processors. Since the maximum throughput of a sys-
tem is equal to the inverse of the demand at the bottle-
neck resource [Jain 1990], we have:

Xmax(p) _ Db(1)

The demand at a resource is the total time t, required
to execute the workload at that resource (i.e., visits x
service time). Thus, if we approximate the behavior of

the system by a single queue/server representing the
bottleneck device, we can write:

Xmax(p) _ Db(1) _ tb(1):
Xmax(1) Db(p) tb(p) B

C(p) = S(p)

While this approximation should be verified (see the
case study below), it is a good one in most cases.

We will use C(p) as a measure of the scalability of the
system. Once the function (model) describing C(p) has
been determined, the throughput of the system with p
processors can be obtained by multiplying Xmax(1) by

C(p)-

CATEGORIES OF SCALABILITY

We will categorize the scalability of a system based on
the behavior of C(p). This classification scheme is simi-
lar to that proposed by Alba for speedup in parallel evo-
lutionary algorithms [Alba 2002]. The categories are:

* Linear—the relative capacity is equal to the
number of processors, p, i.e., C(p) = p.

» Sub-linear—the relative capacity with p proces-
sors is less than p, i.e., C(p) < p.

» Super-linear—the relative capacity with p pro-
cessors is greater than p, i.e., C(p) > p.

Linear Scalability

Linear scalability can occur if the degree of parallelism
in the application is such that it can make full use of the
additional resources provided by scaling. For example,
if the application is a data acquisition system that
receives data from multiple sources, processes it and
prepares it for additional downstream processing, it
may be possible to run multiple streams in parallel to
increase capacity. In order for this application to scale
linearly, the streams must not interfere with each other
(for example via contention for database or other
shared resources) or require a shared state. Either of
these conditions will reduce the scalability below linear.

Sub-Linear Scalability

Sub-linear scalability occurs when the system is unable
to make full use of the additional resources. This may
be due to properties of the application software, for
example if delays waiting for a software resource such
as a database lock prevent the software from making
use of additional processors. It may also be due to
properties of the execution environment that reduce
the processing power of additional processors, for
example overhead for scheduling, contention among
processors for shared resources such as the system
bus or communication among processors to maintain a

global state. These factors cause the relative capacity
to increase more slowly than linearly.

Super-Linear Scalability

At first glance, super-linear scalability would seem to
be impossible—a violation of the laws of thermody-
namics. After all, isn’t it impossible to get more out of a
machine than you put in? If so, how can we more than
double the throughput of a computer system by dou-
bling the number of processors?

The fact is, however, that super-linear scalability is a
real phenomenon. The easiest way to see how this
comes about is to recognize that, when we add a pro-
cessor to a system, we are sometimes adding more
than just a CPU. We often also add additional memory,
disks, network interconnects, and so on. This is espe-
cially true when expanding clusters. Thus, we are add-
ing more than just processing power and this is why we
may realize more than linear scaleup. For example, if
we also add memory when we add a processor, it may
be possible to cache data in main memory and elimi-
nate database queries to retrieve it. This will reduce the
demand on the processors, resulting in a scaleup that
is more than can be accounted for by the additional
processing power alone.

The next section discusses several models that exhibit
these categories of behavior.

MODELS OF SCALABILITY

This section discusses four models of scalability:

1. Linear scalability
2. Amdahl’s law

3. Super-Serial Model
4. Gustafson’s Law

The Super-Serial Model is an extension of Amdahl’s
Law and has appeared in the context of on-line trans-
action processing (OLTP) systems [Gunther 2000], in
beowulf-style clusters of computers [Brown 2003] and
others. The other three were developed in the context
of speedup for parallel algorithms and architectures.
Amdahl’s Law and the Super-Serial Model, describe
sub-linear scalability. Gustafson’s Law, describes
super-linear scalability. These models were developed
in a different context, but as we illustrate they apply to
Web applications.

Other models of scalability, such as memory-bounded
speedup [Sun and Ni 1993], are available but are
beyond the scope of this paper.

Linear Scalability
With linear scalability the relative capacity, C(p), is
equal to the number of processors, p.

Cip)=p 1

For a system that scales linearly, a graph of C(p) ver-
sus p is a straight line with a slope of one and a y-inter-
cept of zero [C(0)=0]. Figure 2 shows a graph of
Equation 1.

N Wow
o o O
L L L y

- o
o o
L n

Relative Capacity (C(p))
o 3

o

10 15 20 25 30 35

o
(&)

Number of Processors (p)

Figure 2: Linear Scalability

Note that our definition of C(p) does not allow for linear
scalability with a slope that is not equal to one, i.e. C(p)
= kp where k = 1. If this were possible, C(1) could be
different from one. But, since

Xinax(1) _

o = % @

k must be equal to one.

This means that both sub-linear and super-linear scal-
ability must, in fact, be described by non-linear func-
tions. While measurements at small numbers of
processors may appear to be linear, measurements at
higher numbers of processors will reveal the non-lin-
earity.

This also means that linear extrapolations of “near-lin-
ear” results, such as that in our opening example, can
be misleading. Since the actual function is necessarily
non-linear, these extrapolations will overestimate the
scalability of the system if the slope of the extrapolated
line is less than one and underestimate it if the slope is
greater than one.

Amdahl’s Law

Amdahl’s Law [Amdahl 1967] states that the maximum
speedup obtainable from an infinite number of proces-
sors is 1/c where o is the fraction of the work that must
be performed sequentially. If p is the number of proces-
sors, {5 is the time spent by a sequential processor on
the sequential parts of the program, and f, is the time
spent by a sequential processor on the parts of the pro-
gram that can be executed in parallel, we can write the
Speedup for Amdahl’s Law, Sa:

_ _T) - Lt
Speedup = S, = =—< =
AT T(p) ts+t,/p
Sy = 1 =D

t_S . tp (1) c+mn/p
tott, ts+t\p

Here, o is the fraction of the time spent on the sequen-

tial parts of the program and = is the fraction of time

spent on the parts of the program that can be executed

in parallel. Since n =1 -oc:

= #
Sa 1+o(p-1)
Or, using the equivalence between speedup and
scaleup,

Calp) = 1+G€p—1)
If 6 = 0 (i.e., no portion of the workload is executed
sequentially), Amdahl's Law predicts unlimited linear
scaleup (i.e., Ca(p) = p). For non-zero values of o, the
scaleup will be less than linear. Figure 3 shows a com-
parison of linear scalability with Amdahl’s Law scalabil-
ity for o = 0.02.

= 351
s
Q 301
> 25 1
=
7}
20 1 —
% o —--T75so02
o 197 ,”_’/— N
.g 10 4 ,’,,’ Linear
® 54 =" ———-Amdahl's Law
o
e o T T T T T T)
0 5 10 15 20 25 30 35

Number of Processors (p)

Figure 3: Amdahl’s Law versus Linear Scalability
The maximum speedup that can be obtained, even
using an infinite number of processors is:

lim S, =
p—w

Ql=

This means that, if the serial fraction of the workload is
0.02, the maximum speedup that can be achieved is
50—and it will take an infinite number of processors to
achieve that! Amdahl’'s argument was that, given this
limitation, a fast single-processor machine is more
cost-effective than a multiprocessor machine.

As Figure 3 shows, there are diminishing returns for
adding more processors. The penalty increases as o

increases. For 6=0.20, Amdahl’s Law predicts that add-
ing a second processor will yield a relative capacity of
1.67. That is, the maximum throughput with two pro-
cessors will be 1.67 times that with one processor. If,
instead of adding a second processor, we replace the
single processor with one twice as fast, the throughput
will then be exactly twice that with the slower proces-
sor. This is because the faster processor reduces the
time required for both the serial and parallel portions of
the workload. Because of this, it is generally more cost-
effective to use a faster single processor than to add
processors to achieve increased throughput in cases
where Amdahl’s Law applies.

Super-Serial Model

Gunther [Gunther 2000] points out that Amdahl’s Law
may be optimistic in cases where there is interproces-
sor communication, for example to maintain cache con-
sistency among processors. In these cases if, when an
update is needed, a processor sequentially sends
updates to each of the p — 1 other processors and the
time required to process and send a message is {;, we
have the super-serial capacity for p processors, Cs(p):

_ I sty
P = Ty T BT L et

Or, after some algebra:

Cqsp) =

p
T+ol(p=1)+yp(p-1)]

where vy is the fraction of the serial work that is used for
interprocessor communication. This result is identical
to the Amdahl's Law result with an extra term in the
denominator for overhead due to interprocessor com-
munication. Gunther has called Equation 3 the Super-
Serial Model [Gunther 2000].

The term in Equation 3 that contains y grows as the
square of the number of processors. This means that,
even if the overhead for interprocessor communication
is small, as the number of processors increases, the
communication overhead will eventually cause C(p) to
reach a maximum and then decrease. Figure 4 shows
a comparison of Equation 3 for c = 0.02 and various
values of y with linear scalability and Amdahl’s Law.

Gustafson’s Law

For certain applications, it was found that speedups
greater than that predicted by Amdahl’s Law are possi-
ble. For example, some scientific applications were
found to undergo a speedup of more than 1,000 on a
1,024 processor hypercube. Gustafson [Gustafson
1988] noted that Amdahl’s Law assumes that the paral-
lel fraction of the application (r = 1 — &) is constant, i.e.,
independent of the number of processors. Yet, in many

a
=]

c=0.02,y=0
o =0.02, y =0.001

N
o

(]
S

6 =0.02, y = 0.005

n
o

6=0.02, v = 0.010

Relative Capacity (C(p))
S

o

50 100 150 200 250 300

o

Number of Processors (p)

Figure 4: Super-Serial Model

cases, the amount of parallel work increases in
response to the presence of additional computational
resources but the amount of serial work remains con-
stant. For example, with more computing power, matrix
manipulations can be performed on larger matrices in
the same amount of time. In these cases, = (and, there-
fore, o) is actually a function of the number of proces-
Sors.

If ts and fp are the times required to execute the serial
and parallel portions of the workload on a parallel sys-
tem with p processors, a sequential processor would
require a time of s + (fp x p) to perform the same work.
Gustafson termed this scaled speedup which is
described in the following equations:

t.+(t
Scaled Speedup = Sg = s+ Upxp)
t,+t o

Sg=p+c'(1-p) 4

where ¢’ is the serial fraction of the work performed on
p processors. Equation 4 is known as Gustafson’s Law
or the Gustafson-Barsis Law.

Gustafson’s Law describes fixed-time speedup while
Amdahl’'s Law describes fixed-size speedup.

As with Amdahl’s Law, Gustafson’s Law also applies to
scalability. We can not use the formulation in Equation
4 directly, however. Equation 4 describes the speedup
as the ratio of the time required to execute the work-
load on a system with p processors to that required to
execute the same amount of work on a single proces-
sor. This is not a ratio that is likely to be measured,
however. We are more likely to have measurements of
the maximum throughput at various numbers of pro-
cessors. Thus, to use Gustafson’s Law for web applica-
tion scalability, we need to express it in terms of C(p),
the ratio of the maximum throughput with p processors
to the maximum throughput with one processor.

The demand with one processor is t5(1) + tp(1) and the
maximum throughput is therefore:

1
XmaX(1) ts(1) + tp(1)

Gustafson’s Law assumes that the parallel portion of
the workload increases as the number of processors.
Thus, the total demand with p processors is tg(1)
+(fp(1) x p). However, this demand is spread over p
processors, so the average demand per processor is:

ty(1) + (t,(1) x p)

Dy(p) = D

Note that the average demand per processor is a
decreasing function of p. This is because only one pro-
cessor can execute the serial portion of the workload. If
the degree of parallelism is such that the application is
able to make use of this additional capacity, each pro-
cessor beyond one will be able to execute more paral-
lel work than tp(1), resulting in super-linear scaling.
This can occur in Web applications when loading a
page results in multiple concurrent requests from the
client to retrieve information, such as gifs and other
page elements. Additional processors enable those
requests to execute in parallel.

Under these conditions,
throughput per processor is:

the average maximum

P Do) LM (tMxp)

and the maximum throughput for p processors is:

2

— p

XmarlP) = T M < p)

Using these results, we can write the relative capacity
for Gustafson’s Law as:

2
Cotp) = — B 5
P et —p)
where o'(1) is the serial fraction of the work with one
processor.

As the value of c’(1) approaches zero, this function
approaches linear scalability. In fact, for small values of
c'(1), Equation 5 is difficult to distinguish from linear
scalability. With non-zero values of ¢’(1), the second
term in the denominator is negative for values of p
greater than one, however. This means that C(p) will
increase faster than p giving super-linear scalability.

Figure 5 shows a graph of C(p) versus p for
Gustafson’s Law with two values of ¢'(1). As the figure
shows, at small values of ¢'(1) (e.g., 0.01) Gustafson’s
Law is difficult to distinguish from linear scalability. At
higher values of o’(1), however, the curve definitely
shows its non-linearity.

=45

% 40 M)=020 -~

2 351 o= g2

%‘ 30 7

S 251 ted (1) = 0.01

© 20 s

o -

@ 157 =

2 101 =

K 5 =

[]

€ o . . , , ,
0 5 10 15 20 25 30 35

Number of Processors (p)

Figure 5: Gustafson’s Law

The next section illustrates the applicability of these
models with a case study.

CASE STUDY

This case study is based on the Avitek Medical
Records (MedRec) sample application developed by
BEA Systems, Inc. [BEA 2003a]. This application is an
educational tool that is intended to illustrate best prac-
tices for designing and implementing J2EE applica-
tions. It has also been used to demonstrate the

scalability of BEA's WebLogic Server! [BEA 2003b].

MedRec is a three-tier application that consists of the
following layers [BEA 2003a]:

* Presentation layer—The presentation layer is
responsible for all user interaction with MedRec.
It accepts user input for forwarding to the appli-
cation layer and displays application data to the
user.

» Application layer—The application layer encap-
sulates MedRec’s business logic. It receives
user requests from the presentation layer or
from external clients via Web Services and may
interact with the database layer in response to
those requests.

» Database layer—The database layer stores and
retrieves patient data.

Users interact with MedRec via a browser using HTTP
requests and responses. External clients may also use
MedRec as a Web Service. The presentation and appli-
cation layers reside on one or more application serv-

1. WebLogic Server is a trademark of BEA Systems, Inc.

ers. The database layer resides on a separate
database server. Figure 6 shows a schematic view of

the MedRec application.
Figure 6: MedRec Application Configuration

Client Application Server Database Server

This case study is based on measurements of this
application published by BEA Systems, Inc. [BEA
2003b]. These measurements were made to demon-
strate the scalability of BEA's WebLogic Server.
Because of this, no specific performance requirements
were specified.

Table 2 shows the demand for each of the resources in
the system. The application server CPU has the high-
est demand and is therefore the bottleneck resource.

Table 2: Resource Demand

Resource Demand
Application Server CPU | 0.0227
Database Server CPU 0.000168
Disk 0.00138

We begin by examining the validity of the single-queue
approximation for describing the behavior of the sys-
tem. The following sections then explore vertical and
horizontal scaling characteristics of this application.

Single Queue Approximation

This analysis is based on measured data for an appli-
cation server with a single 750 MHz processor. The
database server was an 8-processor (750 MHz)
machine with RAID disks. The measurements appear
in Table 3. Note that the high number of transactions
per second for a single client is due to using a think
time of zero for these measurements. We recommend
a more realistic think time for your measurement stud-
ies. There are a few other aspects of the measure-
ments that we question, but we are unable to confirm
their validity because we did not conduct these mea-
surement studies.

From the maximum throughput and the throughput with
one client, we can calculate the demand at the bottle-
neck resource, Dp and the total demand, D7 [Jain
1990].

Table 3: Measured Throughput versus Number of

Clients
Number Transactions
of Clients per Second
1 41.39
4 43.96
10 42.78
20 43.54
40 42.74
80 43.01
100 43.05
Max TPS 43.96
Appserver CPU Utilization
atpl\elax TPS 98%
DB Server CPU Utilization <1%
at Max TPS
DB Server Disk Utilization 6%
at Max TPS
D+ = a1 0.0242 sec
T X(1) 4139

Note that the total demand with one user is the sum of
the demands in Table 2, 0.0242 sec. Also note that the
bottleneck demand is 93.8% of the total demand. With
such a large percent of the overall demand attributable
to the bottleneck resource, the single-queue approxi-
mation is a good one.

50 7

45
_— v * hd
(7]
o 40
E 351
§_ ‘Zg 1 * Measured
< _
g 20 Modeled
o 15
£ 10
[5
0 T T T 1
0 5 10 15 20

Number of Clients

Figure 7: Measured versus Modeled Data

Using the results for Dy and D7, we can construct a
simple system model using a single queue/server that
represents the bottleneck resource—in this case, the
application server CPU. Figure 7 shows a portion of the
measured data for the MedRec application on the sin-
gle-processor server along with the modeled curve for
a QNM solution using a single queue/server represent-
ing the bottleneck resource. The model was con-
structed and solved using SPE-ED'. As the figure
indicates, the single queue approximation is a good
one for this system (because the Application Server
CPU dominates the demand).

Vertical Scalability

To demonstrate the vertical scaling characteristics of
this application, throughput versus number of simu-
lated clients was measured for 1-, 2-, 4-, and 8 proces-
sor application server configurations. The application
server is a 750 MHz platform capable of holding up to
24 processors. Utilizations for the application and data-
base server CPUs as well as the database server disk
were also measured. Table 4 shows the results of
these measurements.

Table 4: Measured Throughput for Vertical Scaling

Number of
Processors

Max TPS

Number of
Clients at Max 4 40 20 40
TPS

Appserver
CPU Utilization 98% 97% 95% 91%
at Max TPS
DB Server

CPU Utilization <1%
at Max TPS
DB Server

Disk Utilization 6% 12% 19%
at Max TPS

1 2 4 8

43.96 78.74 | 14251 | 216.35

1.30% 2.25% 3.91%

28.24%

Note that the number of clients at Max TPS decreases
at 4 processors. This is one of the questionable mea-
surements that we found. You can see in Table 3 that
the maximum transactions per second fluctuates
between 4 and 80 clients, but remains close to 43
transactions per second.

Amdahl’s Law Regression analysis determines that
Amdahl’'s Law provides a good fit to this data with a ¢

of 0.0881 (r2 = 0.992). This value of s indicates that
8.8% of the workload must be performed sequentially.

The maximum number of processors that can be
installed in this server is 24. Thus the maximum value
of C(p) that can be obtained is:

24

- p -
@4 = 5 To(p-1) 1+0.0881(24-1)

=7.93

The maximum throughput with one processor, Xmax(1),
is 43.96 transactions per second so the maximum
throughput with 24 processors would be:

X, . (24) = C(24) x 43.96 = 348 tps

1. SPE-ED is a trademark of Performance Engineering Services
Division, L&S Computer Technology, Inc.

The limit on C(p) for Amdahl’'s Law is 1/c. Thus, even
with an infinite number of processors, the maximum
value of C(p) that could be obtained is 11.4 for a maxi-
mum throughput of 500 transactions per second.

Super-Serial Model Regression analysis determines
that the Super-Serial Model also provides a good fit to
this data. This is not surprising since the Super-Serial
Model is an extension of Amdahl’'s Law with an extra
term for interprocessor communication.

The values of the super-serial parameters obtained
from a regression analysis are: ¢ = 0.0787 and y =

0.0164 (r2 = 0.993). This indicates that, according to
the Super-Serial Model, 7.9% of the work must be per-
formed sequentially. Approximately 1.6% of that
sequential work is used for interprocessor communica-
tion.

The value of C(p) predicted by the Super-Serial Model
at 24 processors is:

24

= 6.82
1+0.0787[23 + 0.0164 x 24 x 23]

C(24) =

which gives a maximum throughput of 299 transactions
per second.

Overall Evaluation Figure 8 summarizes the mea-
sured data as well as the maximum throughput versus
number of processors predicted by both Amdahl's Law
and the Super-Serial Model.

400 1
350 A
300 A - ————-
—_ =
2 2501 ==
L=
= 200
>§ 150 ¢ Measured
Amdahl's Law
100 :
— — — - Super-Serial Model
50
0 T T T T]
0 5 10 15 20 25

Number of Processors

Figure 8: Summary of Modeled and Measured Data

As Figure 8 shows, there is little difference between
Amdahl’s Law and the Super-Serial Model in the region
covered by the measured data and both models pro-
vide a reasonable fit. The values of r-squared from the
regression analysis indicate a slightly better fit for the
Super-Serial Model (r? = 0.993) than Amdahl’s Law (r? =
0.992).The difference is small, however, and the
increase in r? may be due to the extra degree of free-

dom introduced by the additional parameter in the
Super-Serial Model rather than an improved fit.

Without additional information, it is not possible to say
which model fits the data better. Measurements at
higher numbers of processors would help resolve the
ambiguity. Knowledge of the software architecture
could also help select the most appropriate model. For
example, if we know that there is a shared state that
must be maintained among the processors, the Super-
Serial model would be the most likely choice.

In view of this, we consider the Amdahl’s Law result of
348 transactions per second to be upper limit on the
capacity that can be obtained by scaling this system
vertically and the Super-Serial result of 299 transac-
tions per second to be a lower bound.

Horizontal Scalability

In this section, we explore the horizontal scaling char-
acteristics of the MedRec application. In this study,
each node contains four 400 MHz processors. Rather
than adding more processors to a node, additional
nodes are added to scale the system.

Measurements of throughput versus number of simu-
lated clients were made for 1-, 2-, 3-, and 4-node con-
figurations. The database and network configurations
were the same as those used for the vertical scaling
study. Table 5 shows the results of these measure-
ments.

Table 5: Measured Throughput for Horizontal Scaling

Number of
Nodes

Max TPS

Number of
Clients at Max 40 40 40 100
TPS

Appserver
CPU Utilization
at Max TPS

DB Server
CPU Utilization
at Max TPS
DB Server
Disk Utilization
at Max TPS

1 2 3 4

100.49 | 208.66 | 313.06 | 418.76

95.09% | 95.58% | 95.35% | 95.22%

1.70% 3.64% 6.21% 9.70%

13.94% | 27.79% | 40.58% | 53.25%

Regression analysis shows that both Gustafson’s Law
and the linear model provide good fits to the measured
data. Regression analysis based on Amdahl’s Law and
the Super-Serial model do not yield good fits to the
experimental data. In addition, both analyses give neg-
ative values for the serial parameters. Thus, Amdahl’s
Law and the Super-Serial model are not appropriate for
this data.

Gustafson’s Law Regression analysis indicates that
Gustafson’s Law provides an excellent fit to the hori-

zontal scaling measurements with ¢'(1)=0.0477 (r? =
0.9999). This indicates that approximately 4.8% of the
work with one processor is performed sequentially.
Since this amount of work is constant, as more proces-
sors are added, this fraction decreases.

Linear Scalability The linear model also provided an

excellent fit to the horizontal scaling measurements (r2
= 0.9997). The slope of the regression line is 1.039.

Table 6 shows the measured values of maximum
throughput along with the values predicted by
Gustafson’s Law and the linear model.

Table 6: Measured Versus Modeled Throughput

Number of Gustafson’s .
Measured Linear
Nodes Law
1 100.49 100.49 100.49
2 208.66 205.89 200.98
3 313.06 311.36 301.47
4 418.76 416.86 401.96

Note that, as discussed earlier, for linear scalability the
slope must be one. Thus, a slope of one was used to
calculate the linear predictions in Table 6. Figure 9
shows a graphical comparison of the measured and
modeled throughput for up to ten processors.

400 A =& ¢ Measured

Gustafson's Law

————Linear

0 2 4 6 8 10
Number of Nodes (n)

Figure 9: Measured versus Modeled Data

As Table 6 and Figure 9 indicate, the Gustafson’s Law
estimates more nearly match the measured values.
However, an additional measurement at a higher num-
ber of processors would help distinguish between
these two models.

Secondary Bottlenecks Both models predict that we
can expect considerably more throughput from the hor-
izontal scaling strategy than from the vertical. However,
it is still important to be careful when extrapolating. For
example, if our performance requirement is 1,000
transactions per second, Gustafson’s Law predicts that
using ten nodes will give a maximum throughput of
1,050 transactions per second and the linear model

predicts a maximum throughput of 1,005 transactions
per second.

These projections assume that no other bottleneck
resource will limit our ability to achieve the required
throughput with ten nodes, however. Looking at Table
5, we see that removing the application server CPU
bottleneck leaves the database server disk as the
resource with the highest utilization. The demand at
this resource is 0.00132 seconds which agrees with the
value of 0.00138 obtained in the vertical scalability
measurements to within experimental error. This corre-
sponds to a maximum throughput of 757 transactions
per second. Therefore, to achieve the performance
requirement of 1,000 transactions per second, it will be
necessary to either upgrade to faster disks or add a
second disk to the database server.

Of course, adding only ten nodes will mean that we are
operating at near one-hundred percent utilization on
the application server CPU. This will result in unaccept-
ably long response times, so additional nodes should
be added to reduce the CPU utilization to a more rea-
sonable number.

Case Study Discussion

The results of the analysis indicate a significant differ-
ence in the behavior of the system for vertical versus
horizontal scaling. Since the application software is the
same in both cases, the difference must be due to the
platforms. The most likely explanation for this differ-
ence is the presence of the MP Effect when scaling
vertically. The MP Effect is a loss of computing capacity
that occurs when adding processors to a single plat-
form. This loss of capacity is due to additional over-
head and/or contention between processors for shared
system resources (e.g., the system bus) [Artis 1991],
[Gunther 1996]. Gunther has shown that Amdahl’s Law
and the Super-Serial Model apply to SMP scaling with
super-serial effects becoming more significant as the
amount of interprocessor communication increases
[Gunther 1993].

It is tempting to generalize this result and conclude that
horizontal scaling is superior to vertical scaling in all
cases. However, the scalability of a system depends on
the characteristics of both the application and the exe-
cution environment. In this case, it appears that the
software was structured into units that could execute
independently in parallel. If a larger percent of the
workload were serial, both the vertical and horizontal
scalability would have followed Amdahl’s Law or the
Super-Serial model. In addition, the good horizontal
scalability indicates that back-end database interac-
tions were effectively parallelized so that there was little
or no serial contention there either. This will not be true

10

of all applications. In particular, for distributed applica-
tions that must maintain a common state (e.g., data-
bases) there will be overhead to maintain coherence.
In these cases, interprocessor communication will be a
significant factor. For such applications, the enhanced
communication efficiency of a bus versus a network
may favor vertical scaling on a single platform. Each
application/platform combination should be evaluated
individually.

This case study also emphasizes the importance of
thoroughly understanding the system before commit-
ting to a scaling strategy. Secondary bottlenecks (such
as the database disk here) are a fact of life. It is impor-
tant to know what they are, how they impact the scal-
ability of the system, and how costly they are to remove
before undertaking expensive system upgrades.

Finally, it should be noted that the data published by
BEA Systems, Inc. provides a good example of the
type of information that is useful for understanding and
evaluating scalability.

ECONOMICS OF SCALABILITY

Scalability is an economic as well as a technical issue.
In many cases there are alternative scaling strategies
that will meet performance requirements. The choice
among them should then be based on cost. The impor-
tance of cost in meeting performance requirements is
implicit in the inclusion of cost figures in many bench-
mark reports (see, e.g., [TPC]).

These costs are rarely simple, one-time costs. Adding
more hardware means that there will be costs for pur-
chase or lease, software licenses, maintenance con-
tracts, additional system administration, facilities, and
so on. The timing of these expenditures is likely to be
highly dependent on the scaling strategy. For example,
one strategy may require frequent, small upgrades
while another may require fewer, more expensive
ones. In order to make an unbiased comparison of the
alternatives, it may be necessary to convert the costs
to current dollars. Techniques for this are discussed in
many places, including [Reifer 2002] and [Williams and
Smith 2003].

It is important to consider all costs associated with the
scaling strategy. In some cases, hardware expendi-
tures may be dwarfed by costs for support software
and middleware [Mohr 2003].

Costs of upgrading are also subject to discontinuities
as the amount of hardware is increased. For example,
at some point adding a server may require hiring an
additional system administrator or expanding the facil-
ity to accommodate the additional footprint.

Don’t forget that scalability isn’t just a hardware issue.
It is often easy to increase scalability with a different
(initial) software architecture [Wiliams and Smith
2003]. In this case study, a design alternative that
reduces the CPU consumption of the application could
also improve scalability. The modification would pro-
duce a new version of the application with new scal-
ability characteristics.

Note that the most cost-effective choice for meeting a
given performance requirement might not be the one
with the highest overall scalability.

SUMMARY AND CONCLUSIONS

Scalability is one of the most important quality
attributes of today’s distributed software systems. Yet,
despite its importance, scalability in these applications
is poorly understood. This paper has presented a
model-based view of scalability in Web and other dis-
tributed applications that is aimed at removing some of
the myth and mystery surrounding this important soft-
ware quality.

We use the relative capacity or scalability factor

Xmax(P)
Cp) = 2=
Xmax(1)
as a measure of the scalability of a system. Scalability
is classified according to the behavior of C(p) as:

* Linear—the relative capacity is equal to the
number of processors, p, i.e., C(p) = p.

» Sub-linear—the relative capacity is less than p,
i.e., C(p) <p.

* Super-linear—the relative capacity is greater
than p, i.e., C(p) > p.

A key consequence of using C(p) as the metric for scal-
ability is that for linear scalability, the slope of the line
must be equal to one. This means that both sub-linear
and super-linear scalability must, in fact, be described
by non-linear functions. While measurements at small
numbers of processors may appear to be linear, mea-
surements at higher numbers of processors will reveal
the non-linearity.

This also means that linear extrapolations of “near-lin-
ear” results, such as that in our opening example, can
be misleading. Since the actual function is necessarily
non-linear, these extrapolations will overestimate the
scalability of the system if the slope of the extrapolated
line is less than one and underestimate it if the slope is
greater than one.

11

This paper has reviewed four models of scalability that
are applicable to Web and other distributed applica-
tions. These are summarized in Table 7.

We have also demonstrated the applicability of these
models to Web applications via a case study of a sim-
ple Web application. Analysis of measured data for the
case study system indicates that its vertical scalability
is best described by either Amdahl’s Law or the Super-
Serial Model while its horizontal scalability is best
described by either Gustafson’s Law or linear scalabil-

ity.
Table 7: Scalability Models

Model Clp)
Linear Culp) = p
| __p
Amdahl's Law CaP) = 7% o(p-1)
Super-Serial p
C =
Model sP) = TS — 1) F7p(p - 1
Gustafson's L za
ustafson’s Law C T ST o
e YR

The case study also demonstrates that scalability is a
system property. In this case, the same application
exhibits different scalability properties when scaling
vertically or horizontally.

As this paper demonstrates, these models are applica-
ble to Web and other distributed systems. However,
due to the complexity of such systems, it is likely that
some systems will not conform to any of these models.
It is therefore important to determine, via analysis of
measured data, that a given system follows a known
model before making decisions based on predicted
scalability.

Scalability is also affected by software resource con-
straints such as a One Lane Bridge Performance Anti-
pattern [Smith and Wiliams 2002]. This paper
addressed only hardware bottlenecks. This paper also
considered only a single dominant workload. These
techniques can be adapted to cover these other
aspects of the problem.

REFERENCES

[Alba 2002] E. Alba, “Parallel Evolutionary Algorithms
Can Achieve Super-Linear Performance,” Infor-
mation Processing Letters, vol. 82, pp. 7-13,
2002.

[Amdahl 1967] G. M. Amdahl, “Validity of the Single-
Processor Approach To Achieving Large Scale
Computing Capabilities,” Proceedings of AFIPS,
Atlantic City, NJ, AFIPS Press, April, 1967, pp.
483-485.

[Artis 1991] H. P. Artis, “Quantifying MultiProcessor
Overheads,” Proceedings of CMG '91, December,
1991, pp. 363 - 365.

[BEA 2003a] BEA Systems, Inc., “Avitek Medical
Records 1.0 Architecture Guide,” http://
edocs.bea.com/wls/docs81/medrec_arch/
index.html.

[BEA 2003b] BEA Systems, Inc. “BEA WebLogic
Server: Capacity Planning,” http://e-
docs.bea.com/wls/docs81/capplan/.

[Brown 2003] R. G. Brown, “Engineering a Beowulf-
style Compute Cluster,” Duke University, 2003,
www.phy.duke.edu/resources/computing/brahma/
beowulf_book/.

[Gunther 2000] N. J. Gunther, The Practical Perfor-
mance Analyst, iUniverse.com, 2000.

[Gunther 1996] N. J. Gunther, “Understanding the MP
Effect: Multiprocessing in Pictures,” Proceedings
of CMG '96, December, 1996.

[Gunther 1993] N. J. Gunther, “A Simple Capacity
Model for Massively Parallel Transaction Sys-
tems,” Proceedings of CMG ‘93, San Diego,
December, 1993, pp. 1035-1044.

[Gustafson 1988] J. L. Gustafson, “Reevaluating
Amdahl's Law,” Communications of the ACM, vol.
31, no. 5, pp. 532-533, 1988.

[Jain 1990] R. Jain, The Art of Computer Systems Per-
formance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling,
New York, NY, John Wiley, 1990.

[Mohr 2003] J. Mohr, “SPE on IRS Business Systems
Modernization,” Panel: “The Economics of SPE,”
CMG, Dallas, 2003.

[Reifer 2002] D. J. Reifer, Making the Software Busi-
ness Case: Improvement by the Numbers, Bos-
ton, Addison-Wesley, 2002.

[Smith and Williams 2002] C. U. Smith and L. G. Will-
iams, Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software, Boston,
MA, Addison-Wesley, 2002.

[Sun and Ni 1993] X.-H. H. Sun and L. M. Ni, “Scal-
able Problems and Memory-Bounded Speedup,”

12

Journal of Parallel and Distributed Computing,
vol. 19, no. 1, pp. 27-37, 1993.

[TPC] Transaction Processing Council, www.tpc.org.

[Williams and Smith 2003] L. G. Williams and C. U.
Smith, “Making the Business Case for Software
Performance Engineering,” Proceedings of CMG,
Dallas, December, 2003.

[Williams and Smith 2002] L. G. Williams and C. U.

Smith, “PASASM: An Architectural Approach to
Fixing Software Problems,” Proc. CMG, Reno,
December, 2002

