
Copyright 2005 by the authors. All rights reserved.

Appears in Proc. QEST 2004.

Performance Model Interchange Format (PMIF 2.0):
XML Definition and Implementation

Connie U. Smith
Performance Engineering Services

PO Box 2640
Santa Fe, New Mexico, 87504-2640 USA

www.perfeng.com

Catalina M. Lladó
Universitat Illes Balears

Departament de Matemàtiques i Informática
Carretera de Valldemossa, Km. 7.6,

07071 Palma de Mallorca, Spain
cllado@uib.es

Abstract
A Performance Model Interchange Format (PMIF)

provides a mechanism whereby system model information
may be transferred among performance modeling tools.
The PMIF allows diverse tools to exchange information
and requires only that the importing and exporting tools
either support the PMIF or provide an interface that
reads/writes model specifications from/to a file. This
paper presents a new version of the PMIF specification
(PMIF 2.0) and its XML implementation. The paper also
describes a prototype that was implemented to prove the
concept, in which the exporting tool is SPE·ED and the
importing tool is Qnap, and it discusses the issues in this
and the reverse exchange. It shows the validation of the
prototype based on the solution of examples that were
exported from SPE·ED and imported by Qnap. In addition,
it proposes some extensions to PMIF 2.0.

1. Introduction

A performance model interchange format (PMIF) is a
common representation for system performance model
data that can be used to move models among modeling
tools. A user of several tools that support the format can
create a model in one tool, and later move the model to
other tools for further work without the need to
laboriously translate from one tool’s model representation
to the other. For example, an analyst might create a model
of a server platform to conduct several studies, then move
the model to a tool better suited to network analysis. Other
uses for the PMIF include enabling users to:

1. compare solutions from multiple tools.
2. create input specifications in PMIF or in a familiar

tool rather than learn the interface to multiple tools.
3. migrate a model to temporarily use another tool to

study more detailed models.
4. migrate a model to permanently use a different tool.

5. create software performance models to study
architecture and design trade-offs, then use another tool to
study details of the computer system.

6. compare different tools before buying one.
PMIF also permits modeling tool developers to solve

test cases with a variety of tools to validate solution
algorithms. It lets researchers of solution algorithms
compare solutions from several sources. It gives tool
vendors a relatively easy mechanism for exchanging
models within their own product lines.

PMIF provides a common interface to tools. Without it
two tools would need to develop a custom import and
export mechanism. A third tool would require a custom
interface between each of those tools resulting in a 2N

requirement for customized interfaces. With PMIF, tools
export and import with the same format so the requirement
for customized interfaces is reduced to 2·N.

With XML (Extensible Markup Language) tools the
complexity and amount of effort to create the PMIF
interface is quite small [13]. While XML is verbose, PMIF
is a course-grained interface. A file is exported, sent to
another tool, it is imported and the model solved. So the
performance impact of XML as the interface is
insignificant compared to a fine grained interface that
exchanges each XML element as it is generated.

Earlier work defined a PMIF using an EIA/CDIF
(Electronic Industries Association/CASE Data Interchange
Format) paradigm that calls for defining the information
requirements for a Queueing Network Model (QNM) with
a meta-model [8-10]. A transfer format was then created
from the meta-model and used to exchange information.

This project uses that work (PMIF 1.0) as a starting
point, updates the meta-model with information deemed to
be necessary during this implementation, then specifies an
XML schema for the resulting PMIF 2.0 meta-model. We
implemented a prototype export mechanism from the
SPE·ED software performance modeling tool [6] into
pmif.xml, and a prototype import mechanism from

pmif.xml into the Qnap system performance modeling tool
[7]. Qnap is a modeling tool that can be used on its own or
through Modline, which provides a graphical user-friendly
interface for the model definition and interactive
visualization of results, among others, using Qnap to solve
those models. We used the prototypes to study several
examples. Our use of unlike tools helped us find
limitations in the meta-model and find a general way to
resolve them. The example solutions confirm that the
pmif.xml transfer was successful. The examples provide a
set of models that are well documented, with reproducible
results, that may be used by others who wish to explore
the pmif.xml approach to interchanging models.

There has been other related work in this general area.
For example, Coretellessa and Mirandola annotate UML
diagrams and transform them into Execution Graphs and
Queueing Network Models [3]. More recently,
Cortellessa, et. al., have implemented this approach using
multiple XML files: one with the workload specifications
and another with the device specifications for the
Queueing Network Model [2]. Gu and Petriu use XSLT
(eXtensible Stylesheet Language for Transformations)
[13] to transform UML models in XML format to the
corresponding Layered Queueing Network (LQN)
description which can be read directly by existing LQN
solvers [5]. Wu and Woodside use an XML Schema to
describe the contents and datatypes that a Component-
Based Modeling language (CBML) document may have
[15]. CBML is an extended version of the Layered
Queuing Network (LQN) language that adds the capability
to model software components and component based
systems. These works use XML to transfer design
specifications into a particular solver; however, they do
not attempt to develop a general format for the interchange
of queueing network models among different tools.

This paper first summarizes the PMIF paradigm, its
development and the current version of the PMIF meta-
model. Section 3 covers the XML implementation and the
modifications that were required for PMIF 2.0. Section 4
describes the resulting XML schema. Section 5 describes
the prototypes and issues in exporting and importing
pmif.xml between the two tools. Section 6 covers the
examples. The paper also reports on the status, some
extensions and future work, and conclusions. Many details
that would not fit in this limited space are in [12]. (Reader,
we are sorry for the inconvenience.)

2. PMIF summary

PMIF 1.0 was based on EIA/CDIF [4], a family of
standards for transferring information between CASE
tools. An exchange takes place via a file and internal tool
information is translated to and from the file’s transfer

format. The CDIF paradigm was used to define a QNM
meta-model [10]. The transfer format in the original CDIF
standard used LISP as the implementation language.
Today, XML is a more logical choice for a transfer format
because it was designed for this purpose and there are
many tools available to support the exchange of
information in XML.

This work uses the PMIF 1.0 meta-model as a starting
point because it is a good description of the information
requirements for performance model interchange, but uses
XML to implement the transfer format.

The contents of the PMIF 1.0 Meta-Model resulted
from a taxonomy of the terminology used for QNM in
performance tools and performance textbooks, and of the
features provided by available tools for solving
performance models [10]. A wide variety of features and
terms were considered, as well as feedback from
researchers in the performance field.

PMIF 1.0 established the viability of the approach. It
started with a meta-model of the information required for
a manageable QNM subset: the data needed for QNM that
may be solved using exact analytic solution algorithms.
We discuss mechanisms for extensions later.

This work also begins with PMIF 1.0 as a starting point
to establish the viability of using XML as the transfer
format. During the implementation of the XML transfer,
we discovered some modifications that were required to
exchange the general QNM among unlike tools. The next
section describes the modified meta-model.

3. QNM Meta-model 2.0

3.1. QNM Meta-model 2.0 description

This model is known as the QNM meta-model because
it is a model of the information that goes into constructing
a QNM. This meta-model serves two purposes: To provide
a rigorous definition for the information required for a
QNM that may be solved using exact analytical
techniques; and to generate the formal PMIF using the
XML transfer format derived from the meta-model.

The meta-model diagram in Figure 1 is based on the
PMIF meta-model defined in [10]. This version uses
UML, adds information, and eliminates other information.
Subsequent sections provide more details on the content
changes in version 2.0. The following is an abbreviated
description of the diagram. Complete details are in [12].

A QueueingNetworkModel is composed of one or more
Nodes, and one or more Workloads. A Server provides
service for one or more Workloads. A Workload
represents a collection of transactions or jobs that make
similar ServiceRequests from Servers. There are two types
of Workloads: OpenWorkload and ClosedWorkload.

A ServiceRequest specifies the average TimeService,
DemandService or WorkUnitService for each Workload
that visits the Server. A TimeServiceRequest specifies the
average service time and number of visits. A Demand-
ServiceRequest specifies the average service demand
(service time x number of visits). A WorkUnitService-
Request specifies the average number of visits requested
by each Workload that visits a WorkUnitServer. Upon
completion of the ServiceRequest, the Workload Transits
to other Nodes with a specified probability.

Changes to the PMIF 1.0 meta-model described in the
next section were made because of differences in XML
and CDIF. The enhancements described after that facilitate
the exchange of models between unlike tools.

3.2. XML changes

Our approach was to use the PMIF 1.0 meta-model and
develop an XML schema [13] that matched it as closely as
possible. Classes in the meta-model became elements in
the schema. Attributes in the meta-model became
attributes in the schema.

XML allows inheritance, but its specification in XML
is inconvenient. For example, consider a Node that is a
Server and a WorkUnitServer. With inheritance it would
be specified:

 <Node Name="Sample">
 <Server Quantity="1" SchedulingPolicy="FCFS">
 <WorkUnitServer ServiceTime="0.05"

TimeUnits="sec"/>
 </Server>
 </Node>
By collapsing the inheritance hierarchy it turns into:

 <WorkUnitServer Name="Sample" Quantity="1"

SchedulingPolicy="FCFS" TimeUnits="sec"
ServiceTime="0.05"/>

The latter is more readable, easier to generate and import.
We preserve the inheritance in the meta-model diagram
because we did not convert the meta-model to XML, but
rather use XML to implement the transfer format. The
meta-model is easier to comprehend with the inheritance.

The relationships in the PMIF 1.0 meta-model (e.g.,
RepresentsArrivalsFor) are not supported in XML
schemas. Relationships must be converted to attributes,

Figure 1. Queueing Network Meta-Model

Queueing
Network
Model

Workload Arc Node

1..n 1..n

Non-Server
Node

Server

Sink Node
Source
Node

WorkUnit
Server

Open
Workload

Closed
Workload

Service
Request

Transit

1..n
Demand
Service
Request

Time
Service
Request

WorkUnit
Service
Request

1..n

EntersNetworkAt

NextNode

The following shows the classes in the above diagram and their attributes. Note that this meta-model has inheritance. For
example, DemandServiceRequest inherits the attributes from ServiceRequest, so in addition to ServiceDemand, TimeUnits,
and NumberOfVisits it also has the inherited attributes WorkloadName and ServerID.

Arc
 Description
 FromNode
 ToNode
ClosedWorkload
 NumberOfJobs
 ThinkDevice
 ThinkTime
 TimeUnits
DemandServiceRequest
 NumberOfVisits
 ServiceDemand
 TimeUnits

Node
 Name
Non-ServerNode
OpenWorkload
 ArrivalRate
 ArrivesAt
 DepartsAt
 TimeUnits
QueueingNetworkModel
 Name
 Date-Time
 Description

Server
 Quantity
 SchedulingPolicy
ServiceRequest
 WorkloadName
 ServerID
SinkNode
SourceNode
TimeServiceRequest
 NumberOfVisits
 ServiceTime
 TimeUnits

Transit
 To
 Probability
Workload
 WorkloadName
WorkUnitServer
 TimeUnits
 ServiceTime
WorkUnitServiceRequest
 NumberOfVisits

elements, or dropped. PMIF 1.0 has 5 relationships. In
PMIF 2.0 the association classes were preserved (e.g.,
ServiceRequest), the others became attributes and are no
longer depicted on the meta-model.

3.3. Enhancements

These are necessary enhancements to the PMIF to
adequately describe QNM between tools that have unlike
model descriptions, such as SPE·ED and Qnap, and are not
due to the XML implementation.

3.3.1. Routing probabilities. The PMIF 1.0 meta-model
in [10] uses number of visits instead of routing
probabilities, assuming that from the number of visits, and
with the knowledge of the queueing network topology,
routing probabilities can be calculated. This assumption is
true for many of the queueing networks that model
computer systems. However, it is not true for the general
case. Based on the equations that relate number of visits to
routing probabilities (shown below), there may be more
unknowns than equations to solve for them when the
unknowns are the routing probabilities. In most modeling
cases, the knowledge of the network topology helps to
reduce the number of unknowns up to a point where the
number of equations is enough to calculate the
probabilities. However, network topology and number of
visits to each node are not (always) enough to calculate
routing probabilities. Since some tools (for instance Qnap)
use probabilities to specify a queueing network and to
avoid losing the generality of the PMIF specification,
routing probabilities are used instead of visits. The number
of visits can always be calculated from the routing
probabilities as follows [1]:

For open networks:

(),,...,1
1

0 Nipvpv
N

j
jijii =+= ∑

=

Where pji is the routing probability from node i to j, and
vi is the mean number of visits of a job to the ith node. In
open networks, the node with index 0 represents the
external world.

The probabilities p0i are obtained from the external
arrival rates, since ii p00 ⋅= λλ , where λ is the overall

arrival rate from outside to an open network and i0λ is the
arrival rate of jobs from outside to the ith node.

And for closed networks:

()Nipvv
N

j
jiji ,...,1

1
== ∑

=
.

Since there are only (N – 1) independent equations for
the visit ratios in closed models, the vi can only be
determined up to a multiplicative constant, and v1 =1 is

usually assumed (the node with index 1 frequently
represents the think device).

We added the routing probability specification as a
Transit element with attributes To and Probability. The
Transit element(s) are appended to the ServiceRequest
element as in the following example:

 <WorkUnitServiceRequest WorkloadName="Withdrawal"

ServerID="DEV1" NumberOfVisits="8">
 <Transit To="CPU" Probability="1"/>
 </WorkUnitServiceRequest>

A ServiceRequest has one or more Transit elements.

Even though probability specifications are adequate,
we left visits in the meta-model and made them optional.
Tools that have analytic solutions use them, and it follows
the “import-friendly” strategy described later.

The probability specifications also make the Arc
specifications redundant. We left them in PMIF 2.0,
primarily because they provide an import-friendly way of
specifying information for a diagram of a QNM. PMIF 2.0
does not contain information, such as coordinates, for
drawing the diagram, but it will likely be a future
extension.

3.3.2. Workload entry. It is also necessary to append
Transit element(s) to specify the probability and where the
OpenWorkload and ClosedWorkload go when they enter
the system.

3.3.3. BranchPoints. In PMIF 1.0, a BranchPoint is “a
convenient way to specify the origin or destination of
multiple arcs.” PMIF 2.0 eliminates them (see [12] for the
rationale).

3.4. Other meta-model modifications

PMIF 1.0 specified a maximum length for names; we
removed this restriction. If the importing tool has a
limitation, it must adapt names accordingly. Section 6.4
discusses how this was handled for Qnap.

There are requirements for names that are used as IDs
in XML that are not explicit in the meta-model. The
formal definition of an XML name that is used as an ID is
in http://www.w3.org/TR/2004/REC-xml-20040204/#id.

CDIF has a MetaIdentifier--a unique name that
associates content in the transfer format to its formal
definition; we deleted the it. The MetaIdentifier could be
restored if PMIF were ever to become a standard whose
content was carefully controlled.

PMIF 1.0 contained both a Name and an ID attribute.
The ID served as a cross reference for other specifications.
For example, in PMIF 1.0 two nodes, such as CPU and
Disk, each have an (integer) ID, such as 1 and 2
respectively, then the Arc specification was:

 (Arc QNM001.1 (FromNode #d1) (ToNode #d2))

where QNM001.1 is the MetaIdentifier. In PMIF 2.0, the
exporting tool specifies the name of the nodes as an ID:

 <Arc FromNode=”CPU” ToNode=”DISK”/>

Technically it shouldn’t matter because the interchange
format is machine processed. In practice, however, one
needs to read the XML for testing, to determine what
model is in the file, to investigate model results, etc.

Other minor changes include:
• We added the NumberOfVisits attribute to the

DemandServiceRequest to be import-friendly to tools that
must specify the service time per visit rather than total
service demand. While it is possible for the importing tool
to calculate the visits, it can’t currently be done with the
simpler XSLT translation – it would require custom code.

• We deleted NodeType attribute on Nodes (redundant).
• We added optional attributes to QueueingNetwork-

Model to specify date and time for the model. It is useful
documentation, but we do not require it.

• We did not provide default values in the schema.
Import-friendly tools will specify their own default values
for optional attributes.

4. PMIF XML schema

The diagram of the XML Schema for PMIF 2.0 is in
Figure 2. This schema definition requires that the elements
be specified in the top-to-bottom order. Nodes, then Arcs,
then Workloads, then ServiceRequests. We could not find
a way to relax this ordering requirement (at the top level)
in XMLSchema 1.1.

Figure 2. PMIF 2.0 XML Schema

There are several differences between Figure 2 and the
meta-model in Figure 1. The ServiceRequest appears to be
higher in the model hierarchy. This is because
ServiceRequest is an association class in the meta-model,
and when the inheritance hierarchy is “flattened” it
associates the Workload with the Node (not the Server)
even though only Server nodes will have a
ServiceRequest. While we could have attached it to the
Server instead, this method is more convenient for many
exporting tools. For example, SPE·ED first exports the
topology (Nodes and Arcs), then gets Workload
information which contains intensity as well as service
demands.

The following excerpt shows the schema definition for
Workload. A Workload may be zero or more
OpenWorkloads followed by zero or more
ClosedWorkloads. OpenWorkloads have five attributes.
They also have one or more associative Transit elements.

<xsd:complexType name="WorkloadType">
 <xsd:choice>
 <xsd:element name="OpenWorkload" minOccurs="0"

maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Transit" type="TransitType"

maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="WorkloadName" type="xsd:ID"

use="required"/>
 <xsd:attribute name="ArrivalRate"

type="nonNegativeFloat" use="required"/>
 <xsd:attribute name="TimeUnits"

type="TimeUnitsType" use="optional"/>
 <xsd:attribute name="ArrivesAt" type="xsd:IDREF"

use="required"/>
 <xsd:attribute name="DepartsAt" type="xsd:IDREF"

use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="ClosedWorkload" minOccurs="0"

maxOccurs="unbounded">
 <! - -details omitted to save space, see [12]. - ->
 </xsd:element>
 </xsd:choice>
</xsd:complexType>

The following is a pmif.xml workload specification:

 <Workload>
 <OpenWorkload WorkloadName="Withdrawal"

ArrivalRate="1.0" TimeUnits="sec" ArrivesAt="Init"
DepartsAt="Fini">

 <Transit To="CPU" Probability="1"/>
 </OpenWorkload>
 <OpenWorkload WorkloadName="Get_Balance"

ArrivalRate="1.0" TimeUnits="sec" ArrivesAt="Init"
DepartsAt="Fini">

 <Transit To="CPU" Probability="1"/>
 </OpenWorkload>
 </Workload>

The complete schema definition may be seen at
http://www.perfeng.com/pmif/pmifschema.xsd.

5. Import and export models using PMIF

The CDIF strategy is “export everything you know”
and provide defaults for other required information;
“import the parts you need and make assumptions if you
require data not in the meta-model.” Everything you know
is not necessarily everything you use. For example,
SPE·ED uses visits to specify routing, but it knows about
probabilities, and it is relatively easy to calculate them.
We created an “import-friendly” PMIF; that is, we include
both visits and probabilities to make it easy on the import
side. It is easy to do on output and it lets many importers
use simple tools like XSLT rather than requiring custom
code to do the import. Other import-friendly specifications
are described in the following sections.

It is easy to check XML against a schema to confirm
syntactic validity. That is, it contains everything it is
supposed to, that IDREFS point to a declared ID, etc. This
is useful for testing, and it is a good idea to validate a file
before importing it. It is possible to add to the schema to
validate model semantics. For example, that declared
nodes are actually used in the model, the TransitTo
attribute matches some Arc, etc. We did not include these
things because it is reasonable to assume that production
tools generate correct pmif.xml, and that it is only
necessary to validate the semantics occasionally. We
envision an independent tool that one could invoke as
needed to validate the semantics of a QNM. It could do
more than the simple checks mentioned above (e.g.,
confirm that ClosedWorkloads have a valid routing from
the ThinkDevice through the system and back). That tool
would be interesting further work.

Note that there is nothing in PMIF 2.0 or the XML
schema that requires that Transit probabilities sum to 1. It
was not a problem for Qnap. Other importing tools may
need to handle the possibility that they do not sum to 1.

The following sections discuss specific issues in
exporting from SPE·ED and importing into Qnap. Later we
also discuss issues in the reverse exchange although this
exchange was not implemented as part of this project.

5.1. Exporting a SPE·ED model into pmif.xml

SPE·ED uses the Document Object Model (DOM) [13]
to export the pmif.xml. It creates the entire document in
memory, then writes it to a file. Elements and attributes
can be added in any order as long as they are in the correct
location. It is a relatively small file, e.g., 2-3K for these
examples, so the memory requirements are modest.

SPE·ED uses a standard topology for models. Each
facility contains a CPU and one or more other types of

devices. Within a facility the QNM is assumed to be a
central server model. A model may contain multiple
facilities, each with this central server topology.

SPE·ED does not have explicit source, sink, or think
nodes. They had to be created for the pmif.xml along with
their Arcs, and the Transit probabilities for the
OpenWorkload and ClosedWorkload. SPE·ED also uses
visits rather than probabilities. Probabilities were
calculated for the ServiceRequests.

SPE·ED has the ability to specify a Quantity for each
type of device. For the CPU, the quantity is the number of
multi-servers fed from a single queue, so it suffices to
specify the Quantity for the CPU Server in the pmif.xml.
Other devices, such as disks, also have a quantity,
however each of those devices has a separate queue.
SPE·ED assumes that the visits are equally spread to those
devices. To export devices with a quantity greater than
one, it is necessary to generate separate servers, separate
arcs, and calculate equal probabilities for the Transit
elements from the CPU. Several tools including Qnap
have the capability to represent arrays or lists of servers.
We decided not to add a capability to PMIF 2.0 to
accommodate them because it would put a burden on
importing to tools that do not have this capability.

Finally, SPE·ED has no restriction on special characters
in names. We transform characters that are not allowed in
XML IDs into an underscore.

5.2. Importing a pmif.xml model into Qnap

Qnap reads the input (QNM specification and solving
parameters) from a file. Ultimately, Qnap would have an
interface that would read from its standard file OR the
pmif.xml file. However, we did not have access to Qnap
source code and we could not implement such an interface
directly. Therefore, we translated the pmif.xml file into a
file in Qnap’s format to demonstrate the proof of concept.

We generated an XSLT specification that transforms a
pmif.xml file into a file that is read and executed by Qnap.
The direct use of XSLT was feasible due to the possibility
of specifying the stations by parts in the Qnap input file.
This might not be possible for other tools with stricter
ordering in the input file, in which case two possibilities
would arise: The use of DOM to import pmif.xml, or the
use of XSLT together with a conventional programming
language. The use of XSLT is fairly simple; therefore we
recommend XSLT when possible for the translation into a
tool’s file format.

For an implementation that reads from the XML file
directly, the use of DOM would be necessary since XSLT
can only transform an XML file into another file. It would
be advisable to read the entire pmif.xml file into memory
then interpret and insert parameters into appropriate
internal data structures because of the ordering in the

XML schema. That is, some transformations may require
information from elements that have not been read yet.

The translation from pmif.xml to Qnap, required
several special considerations. The most important ones
are discussed in the following paragraphs. Others are in
[12].

Qnap needs a separate source node for each open
workload; therefore those had to be generated. On the
other hand, Qnap does not have an explicit sink node. The
specification for a client leaving the system is in the transit
using a specific identifier (OUT). Hence, this situation had
to be detected and the specific Transit generated.

Qnap needs service time rather than total demand. We
put visits on the DemandServiceRequest to make the
prototype translation easier. Ultimately we need a set of
conversion routines in a developer kit to handle
probability/visit computations.

Time units between SPE·ED and Qnap are not a
problem. SPE·ED uses seconds for all specifications. Qnap
just needs consistent time units. Ultimately we need time
conversion routines in a developer tool kit.

In Qnap only the first 8 characters of an identifier are
significant. The prototype truncates the names, but we do
not test that the names are unique. Ultimately we need a
routine that does this check and generates unique names if
necessary. Other types of checking are also required for
the identifiers (see [12] again).

Qnap allows the models to be solved analytically or
through simulation and this needs to be indicated in the
Qnap input file. Therefore, we implemented two different
transformations, one for each of those solutions. The
model specification is the same, the only difference being
in a few parameters related to the execution.

Solving instructions and instructions for generating
results are also specified in the Qnap input file. These
include some specific instructions for generating extra
results in order to be able to compare results given by both
tools (SPE·ED and Qnap). There are also differences in
stopping conditions in the two tools that makes the
comparison of simulation results approximate.

5.3. Exporting a Qnap model into pmif.xml

Even though the exportation of a Qnap model into
pmif.xml is out of the scope of our prototype, we point out
a few issues that would arise when trying to do so. One
possibility is to generate a pmif.xml from a Qnap input
file. Another is to change Qnap code to generate pmif.xml
from the internal QNM information. Since we did not
have access to the Qnap source code, below are the main
issues for the first option. Some of these points would also
apply with the second option since they come from the
“way of thinking” in Qnap.

• Qnap has many default values, for example
Quantity=1, SchedulingPolicy=FCFS. If those attributes
are not defined they have to be created for the pmif.xml.

• It is not explicitly said whether a Qnap class is open
or closed. It has to be detected from the collection of
transit definitions for each workload. Another possibility
would be to ask the user about it.

• If the model has only one workload, there is no need
of having any workload definition in Qnap. Therefore this
situation needs to be detected and a workload created.

• Qnap does not have an explicit sink node, it must be
created when the model contains open workloads.

• Separate servers must be generated for devices that
are manipulated as a list in Qnap.

• Some characters are allowed in a Qnap identifier but
not in an ID in XML.

5.4. Importing a pmif.xml model into SPE·ED

Importing pmif.xml into SPE·ED would require a DOM
interface for the following reasons.

SPE·ED is a software performance modeling tool. It
uses QNMs for system execution models. So importing a
pmif.xml only specifies the system execution model.
SPE·ED would create a scenario for each workload defined
in pmif.xml, but the scenario would only have one
processing step because PMIF 2.0 does not represent the
software execution structure. To import software
processing details one would use an SPE meta-model such
as that defined in [14] rather than a PMIF.

SPE·ED also specifies software resource requirements
(e.g., database accesses) rather than computer resource
requirements (e.g., CPU and disk). PMIF 2.0 specifies
service requirements for each device. So it would be
necessary to convert ServiceRequest specifications into
appropriate internal structures in SPE·ED.

SPE·ED has a concept of facilities as collections of
central server models. It would require an analysis of the
topology of models with multiple facilities to identify the
devices that go with facilities. Hints, like adding an
optional FacilityId to node specifications, or asking the
user to identify facilities, would be helpful.

SPE·ED has a limit on the number of distinct devices in
each facility. A “quantity” specification allows more
actual devices. So a straightforward translation of devices
may exceed the allowable number, and it would be
necessary to determine which devices could be combined
with the Quantity specification, and to handle excess
devices.

SPE·ED also has special network devices that connect
multiple facilities. It would be difficult to detect these in a
general pmif.xml file, so it would be necessary to query
the user to determine if those devices are present.

The (optional) NumberOfVisits is useful for SPE·ED,
so an import-friendly sending tool should fill them in.

6. Prototype implementation and results

6.1. Prototype: SPE·ED to pmif.xml

The SPE·ED prototype implemented custom code using
the DOM to create the pmif.xml for user’s model
(project). The following is an excerpt of the C++ code to
create the OpenWorkload element in the pmif.xml:

 elementName = ::SysAllocString(L"OpenWorkload");
 attr2Name = ::SysAllocString(L"ArrivalRate");
 attr3Name = ::SysAllocString(L"ArrivesAt");
 attr4Name = ::SysAllocString(L"TimeUnits");
 attr5Name = ::SysAllocString(L"DepartsAt");
 element = CreateDOMNode(pDoc,

MSXML::NODE_ELEMENT, elementName);
 SetStringAttribute(element, nameAttr, thename);
 SetFloatAttribute(element, attr2Name, in_low);
 SetStringAttribute(element, attr3Name, "SourceNode");
 SetStringAttribute(element, attr5Name, "SinkNode");
 SetStringAttribute(element, attr4Name, "sec");
 CHECKHR(pParent->insertBefore(element, after, &p1));
 SAFERELEASE(element);
 addTransit(p1, cpuName, 1.0);
 SAFERELEASE(p1);

An earlier example showed the resulting pmif.xml for
an OpenWorkload. The complete pmif.xml file for the
ATM example described in [10] is in [12].

6.2. Prototype: pmif.xml to Qnap

The following is an excerpt of the XSLT code to
transform the pmif.xml to Qnap format. In Qnap a server
needs first to be declared (a), and after all the declarations,
the stations can be specified (b).
(a)
 / DECLARE/ QUEUE <xsl:for-each
select="QueueingNetworkModel/Node/Server">
 <xsl:if test="position() != 1">, </xsl:if>
 <xsl:value-of select="substring(@Name,1,8)"/>
</xsl:for-each>;
(b)
<xsl:for-each select="QueueingNetworkModel/Node/Server">
/STATION/ NAME=<xsl:value-of

select="substring(@Name,1,8)"/>;
 <xsl:choose>
 <xsl:when test='@SchedulingPolicy = "IS"'>
 TYPE = INFINITE;
 </xsl:when>
 <xsl:when test="@Quantity > 1">
 TYPE = MULTIPLE(<xsl:value-of select="@Quantity"/>);
 </xsl:when>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test='@SchedulingPolicy = "PS"'>
 SCHED = PS;
 </xsl:when>
 <xsl:when test='@SchedulingPolicy = "FCFS"'>
 SCHED = FIFO;

 </xsl:when>
 </xsl:choose>
</xsl:for-each>

6.3. Prototype validation

We conducted tests on the ATM model from [10] and
most of the models covered in [11]. The excluded book
models had major performance problems and their system
execution model had saturated devices and was thus
unstable. Early tests confirmed that the transferred model
was unstable, and we eliminated those models.

Table 1 shows a subset of the models with the solution
method (simulation or analytic) in parenthesis along with
the response time, CPU utilization, Disk utilization and
confidence and simulated time from each tool. See [12]
yet again for complete results. Note that the SPE·ED run
time is the same as Qnap, however it is reported as less
because of a reset after a start interval. There are also
differences in the way the confidence is handled. SPE·ED
uses a (user-selected) confidence interval for the overall
response time, and uses a default 70% confidence level.
This is because it is intended to simulate software
architectures and designs at a time when exact resource
specifications are imprecise. So there is no point in
simulating for a long period of time to get precision in the
solution when the model parameters are only approximate.
Qnap, however, uses a 95% confidence level and reports
the interval by device rather than overall. It is intended to
maximize the precision of the solution.

The first 2 sets of results are for the ATM example
from [10]. It is an open model with 2 workload classes.
Note that SPE·ED does not solve multi-class models
analytically; the analytic results from Qnap are for
comparison to the simulation results. This example shows
that allowing comparison of multiple solution techniques
across tools is a valuable benefit of the PMIF, and it
confirms that the transfer was successful.

Model studies 3 and 4 are the Drawmod example
Architecture 3 from [11]. It is a single class, closed model.
The results are for 10 users with a 60 sec. think time.

Model studies 5 and 6 are for the revised version of the
telephone switching example (POTS) in [11]. It is a
multiclass open model. Study 5 shows the analytical
results from Qnap. There are no disks in this model, the
disk column instead reports results for the Line Interface.

The results confirm that the pmif.xml successfully
transfers models between the two tools. The comparison
of solutions led to the discovery and correction of an
inconsistency of SPE·ED analytical and simulation
solutions. When analytical and simulation solutions differ
slightly, it is difficult to determine whether the difference
is statistically significant or if it results from an error in
the solver(s). The ability to easily compare solutions
across tools is valuable both for tool developers and users.

Table 1. Model Results for Example Files

Model Study Response Time CPU Utilization Disk Utilization Confidence / SimTime
 SPE·ED Qnap SPE·ED Qnap SPE·ED Qnap SPE·ED Qnap
1. ATM (S)
Withdrawal 11.971 11.9 0.006 0.0063 0.403 0.3984
GetBalance 6.354 6.362 0.003 0.0025 0.151 0.1519

.314/ 49890 95% / 50000

2. ATM (A)
Withdrawal 11.9 0.0063 0.4
GetBalance

6.336

0.0025

0.15

3. Drawmod3.2 (A) 12.55 12.49 0 0.00049 0.45 0.447
4. Drawmod3.2 (S) 12.6 12.7 0 0.00049 0.45 0.4465 .29/ 49585 95% / 50000
5. POTS2 (A)
CallOrigination
CallTermination
HangUpCalled
HangUpCaller

0.4773
0.2883
0.063
0.0996

0.369
0.221
0.05
0.077

LineIF
0.135
0.09
0.015
0.03

6. POTS2 (S) LineIF LineIF
CallOrigination 0.3697 0.4833 0.323 0.3694 0.135 0.135
CallTermination 0.2546 0.2913 0.221 0.2204 0.09 0.090
HangUpCalled 0.0633 0.063 0.05 0.0493 0.015 0.015
HangUpCaller 0.0979 0.1002 0.076 0.0768 0.03 0.030

.370 / 49900 95% / 50000

7. PMIF 2.0 extensions

XML does not provide the same concept as CDIF
levels for specifying extensions. It is possible, however, to
define different versions of the schema. Versions could be
used to add additional features not present in PMIF 2.0.

Some features that are relatively easy to add include:
• Additional SchedulingTypes, e.g., LIFO, Quantum
• Priorities for Workloads along with priority

scheduling and preemption
• Service time distributions, e.g., EXP, HEXP, CST,

Erlang, Uniform, Cox
PMIF 2.0 assumes service distributions that permit exact,
analytic solutions. They are not explicit in the meta-model.

Several other features are available in Qnap and other
similar tools, such as maximum queue capacity,
semaphores (events), workload phases and phase changes,
mailboxes, passive resource queues, and other advanced
features, would be useful in a future version of PMIF.

Reviewers of earlier versions of PMIF suggested that it
should contain specifications for solving the model and for
the results that should be produced. PMIF 2.0 does not yet
include them. We also used default stopping conditions
for the simulation runs. A run length specification seems
universal, but it may be difficult to find more advanced
conditions common to diverse tools. For example, some
use confidence levels others confidence intervals, and the
method used varies (e.g., batch means with varying batch
sizes, spectral method, etc.).

Furthermore, Qnap and other tools allow the user to
specify the solution method (such as, convolution, MVA,
normalized convolution, iterative approximation, etc.). So
a specification for the solution method should be included
as an optional attribute for model solution specifications.

The PMIF meta-model (and schema) could specify the
results, or a separate one could be defined for them. A
comma separated text file of those results would be
convenient for importing into spreadsheets, databases or
other tools. We prefer to customize results to the problem
rather than producing all possible results because too
many are almost as bad as too few.

The choices for each of these extensions depend on
how one wants to use the PMIF. The requirements for
solving the model and producing results differ in the six
cases listed in Section 1. Some need an automatic solution
and results, while others only need to get the model into
another tool and the user can then fill in missing details.
Therefore, we may want several versions of the PMIF for
different purposes, or we may want to have separate
schemas, produce multiple files (e.g., model, solution, and
results), and merge them as necessary. Further study is
required to determine what options should be provided
and how to represent them in the meta-model(s).

8. Status & future work

The initial prototypes for exporting SPE·ED models and
importing into Qnap are complete. SPE·ED currently
exports models with multiple workloads, but they must all

execute on the same facility. Multiple facilities will be
added in the near future. They were omitted to focus on
the essence of the interchange problems.

Section 5 described several of the features omitted
from the initial Qnap XSLT prototype because they were
not problems in the models studied. They need to be
completed for a production version of the interchange.

We would like to create a pmif.xml developer kit that
would help others implement an export and import
capability for additional tools. It would contain the
information in this paper, some additional advice on tools
and information learned in this project, a semantic
validator for testing, sample models and results, standard
subroutines for name conversions, visit/probability
calculations, and other common functions.

9. Conclusions

The PMIF supplies users and tools developers with an
exchanging mechanism of system model information
based on the queueing networks formalism. The exporting
and importing tools can either support the PMIF or
provide an interface to read/write model specifications
from/to a PMIF file. We have presented a new version of
the PMIF (PMIF 2.0) and its XML implementation. We
have also proved the concept with the development of a
prototype in which the exporting tool is SPE·ED and the
importing tool is Qnap. Different types of models have
been used as transfer examples and results prove that the
exchange is successful. Moreover, it has been shown that
the comparison of multiple solution techniques across
tools can lead to a wide range of benefits.

We originally viewed the lack of access to Qnap source
code as a serious limitation on the project. It turns out to
be a significant result that pmif.xml can be used by anyone
to exchange information relatively easily between two
tools that provide a file input/output capability. It does not
require the tool developer to modify code to be of use. Of
course, it would be nice if tool developers would support
it so that users would not have to go to this extra effort.
We propose that those who do develop XSLT or custom
code routines to go between pmif.xml and file interfaces
make it available to others to promote the easy interchange
of models. The PMIF 2.0 XML schema is available at
http://www.perfeng.com/pmif/pmifschema.xsd.

10. Acknowledgements

The authors would like to thank Ramon Puigjaner and the
ACSIC research group at the Universitat de les Illes
Balears for the help offered towards their collaboration.

11. References
1. Bolch, G., et al., Queueing Networks and Markov Chains.
Modeling and Performance Evaluation with Computer Science
Applications. 1998: Wiley Interscience.
2. Cortellessa, V., From UML to Execution Graphs and
Queueing Networks: Design and Implementation of the XML-
based tool XPRIMAT. 2004.
3. Cortellessa, V. and R. Mirandola. Deriving a Queueing Net-
work based Performance Model from UML Diagrams. in Proc.
Workshop on Software and Performance. 2000. Ottawa: ACM.
4. EIA, CDIF - CASE Data Interchange Format Overview,
Engineering Department, Electronics Industries Association,
Arlington, VA, EIA/IS-106, January 1994.
5. Gu, G. and D. Petriu. XSLT Transformation from UML
Models to LQN Performance Models. in Proc. Workshop on
Software and Performance. 2002. Rome: ACM.
6. L&S, Computer Technology, Inc., Performance Engineering
Services Division, in # 110, PO Box 9802, (505) 988-3811,
www.perfeng.com: Austin, TX 78766.
7. Simulog, Paris Office, in 1 rue James Joule, 78286
Guyancourt Cedex, 33 (0)1 30 12 27 00, www.simulog.fr:
8. Smith, C.U. and L.G. Williams. Panel Presentation: A
Performance Model Interchange Format. in International
Conference on Modeling Techniques and Tools for Computer
Performance Evaluation. 1995. Heidelberg Germany:
Universitat Dortmund, Germany.
9. Smith, C.U. and L.G. Williams, Definition of a Performance
Model Interchange Format, L&S and SER, www.perfeng.com
publications link, February 1995.
10. Smith, C.U. and L.G. Williams, A Performance Model Inter-
change Format. Journal of Systems and Software, 1999. 49(1).
11. Smith, C.U. and L.G. Williams, Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software.
2001: Addison-Wesley.
12. Smith, C.U. and C.M. Lladó, Performance Model
Interchange Format (PMIF 2.0): XML Definition and
Implementation Technical Report, L&S Computer Technology,
Inc., www.perfeng.com/paperndx.htm, April 2004.
13. W3C, World Wide Web Consortium, www.w3c.org, 2001.
14. Williams, L.G. and C.U. Smith. Information Requirements
for Software Performance Engineering. in Proceedings 1995 Int.
Conference on Modeling Techniques and Tools for Computer
Performance Evaluation. 1995. Heidelberg, Germany: Springer.
15. Wu, X. and C.M. Woodside. Performance Modeling from
Software Components. in Proc. Workshop on Software and
Performance. 2004. Redwood Shores, CA: ACM 488043.

