
Copyright 2005 by the authors. All rights reserved.

A PERFORMANCE MODEL WEB SERVICE

Catalina M. Lladó, Ramon Puigjaner

Universitat Illes Balears
Departament de Matemàtiques I Informàtica

Cra. de Valldemossa, Km 7.6
07071 Palma de Mallorca, Spain

cllado@uib.es, putxi@uib.es

Connie U. Smith
Performance Engineering Services

PO Box 2640
Santa Fe, New Mexico

87504-2640, USA
www.perfeng.com

Performance Engineering uses multiple performance assessment tools
depending on the state of the software and the amount of performance
data available. This paper demonstrates how Web Services can be used
to facilitate the use of modeling tools in a plug-and-play manner thus
enabling the use of the tool best suited to the analysis. It describes the
design and implementation of a prototype Web Service for a performance
modeling tool. Additionally, it shows experimental results that prove the
viability of such a Web Service.

1. INTRODUCTION
The Software Performance Engineering (SPE)
process uses multiple performance assessment tools
depending on the state of the software and the
amount of performance data available. Web Services
are distributed software components that allow the
communication among applications or application
components in a standard way through common
protocols that are independent of the programming
language, platform, presentation format, and
operating system. A Web Service is a container that
encapsulates specific functions and makes these
functions available to other servers.

If a software performance modeling tool, like SPE·ED
[L&S], wants to access another performance model
Web Service, the tool first exports the model to a
predefined model interchange format and then makes
an HTTP call (application-to-application) to this Web
Service.

If the owner of another modeling tool wants to provide
such a performance model Web Service the tool must
provide interfaces for: importing the interchange
format into the tool's model format, solving the model,
and returning the results in a format that can be

understood by the caller. These interfaces then need
to be implemented as a Web Service as described
later in the paper.

A user of several tools that support a common
interchange format can create a model in one tool,
and later move the model to other tools for further
work without the need to laboriously translate from
one tool’s model representation to the other and the
need to validate the resulting specification. For
example, an analyst might create a model of a server
platform in order to conduct several studies, and then
move the model to a tool better suited to network
analysis. Web Services provide a mechanism to easily
invoke other tools automatically rather than having to
manually execute each one. Other benefits of such a
“plug and play” infrastructure include:

• Enabling users to compare solutions from
multiple tools.

• A user may want to migrate a model to
temporarily use another tool to develop and study
more detailed models.

• A user may want to migrate a model to
“permanently” use a different tool for the model.

Copyright 2005 by the authors. All rights reserved.

• A user may want to create software
performance models to study architecture and
design trade-offs, then use another tool to study
the computer system operating environment in
greater detail.

• A user may want to compare different tools,
for instance before buying one.

• A user may want to create input specifications
in a common interchange format or in a familiar
tool rather than learn the interface to multiple tools.

We could also use performance model Web Services
for Software Performance Engineering (SPE). Doing
so would offer the following advantages:

1. Developers can prepare designs as they usually
do and export the data to SPE tools where
performance models can be constructed
automatically.
2. The model transformation can be used to check
that the resulting processing details are those
intended by the UML specification.
3. Data available to developers can be captured in
the development tool; measurement data can be
incorporated into the model definition; and, with the
SPE tool, software performance specialists can add
missing data.
4. Rapid production of models makes data available
for supporting design decisions in a timely fashion.
This is good for studying architecture and design
tradeoffs before committing to code.
5. Developers can do some of this on their own
without needing detailed knowledge of performance
models.

This work is part of an ongoing project to automate
SPE performance evaluation. Previous results have
established a foundation that makes implementation
of a Performance model Web Service viable. These
results are reviewed here and pointers are given to
further information on each of them.

This paper first presents the SPE process for model
exchanges and discusses the tool “plug and play”
approach. It provides some background information
on Web Services and how this technology can be
used to implement the tool use. Then we introduce
two XML based interchange formats that facilitate
using a variety of performance tools, thus enabling the
use of the tool best suited to the analysis. Next we
describe the prototype performance model Web
Service design and implementation followed by the
experimental proof of concept and results. Plans for

future work and conclusions complete the
presentation.

2. CONCEPT
Our vision for the SPE model interchange process
shown in Figure 1 is [Smith et al. 2005]:

1. A software architect, designer, or developer would
use a UML tool to create their model of the software
and when ready for the assessment, export the model
into a common interchange format such as Software
Performance Model Interchange Format S-PMIF
(described in section 4).
2. If the UML tool does not support S-PMIF an
intermediate step is required to translate the UML tool
format such as XMI into the model interchange format
S-PMIF. The intermediate translator may also
automatically import performance data from
measurement tools.
3. A software performance engineer would then
import the S-PMIF into a software performance
modeling tool such as SPE·ED. They would likely
need to add one or more of the following: resource
requirements, facility and device characteristics, and
the overhead matrix. The latter task may be skipped
when the original UML model is annotated with all the
additional performance information needed (using, for
example, the UML SPT profile [OMG 2003]), and the
translation tool is able to process this additional
information.
4. The software performance engineer would
conduct performance studies, and if problems are
found, modify the software performance model
accordingly.
5. After resolving any serious problems with the
software architecture and/or design, they may export
the model into a second interchange format, PMIF, a
common representation for system performance
models described as queueing networks (QNM)
(described in section 4).
6. A Web Service would import the PMIF into a QNM
solving tool for further investigation of performance
properties of the network and computer system, such
as the effect of locking and contention with other work
in the environment.
Results would then be exchanged in the reverse
direction and ultimately the software specialist would
be able to view suggestions for performance
improvements and automatically update the UML to
reflect selected changes. Note that the reverse
direction is not shown in Figure 1.

Note that this description covers a first pass
performance evaluation and it assumes that a

Copyright 2005 by the authors. All rights reserved.

software performance engineer initiates the use of the
other tools. It is possible that the software developer
using a UML tool may initiate the invocation of all the
performance modeling tools, or even a system
performance specialist or capacity planner may initiate
the use of other tools to collect information on new

software systems under development. The use of
Web Services for the various tools makes any of
these scenarios viable.

XMI representation of
UML models

UML-based
CASE tool

SPEED

Exporting to XMI

XPRIT

S-PMIF-based
software model

Values of
performance
indices (early

stages)

performance
annotations

Performance
Tool X

Evaluation
Process

Performance
Tool Y

Evaluation
Process

PMIF 2.0-based
system model

Queueing
Network
Solver S

Queueing
Network
Solver T

QNAP

Values of
performance
indices (late

stages)

XMI
translator

XMI
translator

Measurments

Figure 1. The SPE interchange process

3. WEB SERVICES
A Web Service is a software system designed to
support interoperable machine-to-machine interaction
over a network [W3C 2001]. Web Services are self-
contained, self-describing, modular applications that
can be published, located and invoked across the
Web.

In order to access a Web Service, a client only needs
to know this service definition and not how the service
has been implemented. Therefore, clients and servers
do not need to be written in the same language.

There are 3 main components in the Web Service
environment, all of them XML (eXtensible Markup

Language) based: SOAP (Simple Object Access
Protocol), WSDL (Web Services Description
Language) and UDDI (Universal Description,
Discovery, and Integration).

SOAP is the standard protocol for accessing Web
Services, making possible the communication
between applications and their information
interchange. It is an XML-based protocol for
messaging and remote procedure calls that works on
existing transport protocols, such as TCP, HTTP,
SMTP, etc. A SOAP message is an XML document
with a structure consisting of four basic parts:
envelope, header, body and fault.

Copyright 2005 by the authors. All rights reserved.

WSDL is an XML-based language for describing Web
Services and how to access them. It specifies the
endpoint of the service, the operations that it offers,
and the input and output of a Web Service.
Finally, UDDI is a registry where available services
are published. Thanks to the registry, end users can
easily find Web Services information.

We can now define a Performance model Web
Service in terms of these technologies as: A
Performance model Web Service is a performance
modeling tool service exposed on the Web through
SOAP, described with a WSDL file, and registered in
UDDI.

4. PERFORMANCE MODEL INTERCHANGE
FORMATS
Standard model interchange formats are the
foundation that enables a Performance model Web
Service. A common set of XML based interchange
formats lets one use a variety of different tools as long
as they support the format. Without them each tool
would have to implement a custom interface to every
other tool.

To use an interchange format, each tool must either
provide an explicit import and export command, or
provide an interface to/from a file. With a file interface,
an Extensible Stylesheet Language translation (XSLT)
[W3C 2001] can convert between the interchange
format and the file. The translation can be relatively
easy.

There are two performance model interchange
formats as shown in Figure 1. The Performance
Model Interchange Format (PMIF) is for the exchange
of Queueing Network Models (QNM); and the
Software Performance Model Interchange Format (S-
PMIF) is for the exchange of software performance
models among (UML-based) software design tools
and software performance engineering tools. Each is
described in the following paragraphs.

Earlier work defined a PMIF derived from a meta-
model for system performance models that are based
on QNMs [Smith and Williams 1999; Williams and
Smith 1995]. The PMIF meta-model is a model of the
information that goes into constructing a QNM model.
The PMIF was subsequently enhanced, implemented
in XML, and named PMIF 2.0 in [Smith and Lladó
2004].

Thus, the PMIF 2.0 is a common representation for
system performance model data that can be used to
move models among system performance modeling
tools that use a queueing network model paradigm. A
user of several tools that support these formats can

create a model in one tool and easily move models to
other tools for further work.

Earlier work also defined an SPE meta-model that
formally defines the information required to perform an
SPE study [Williams and Smith 1995]. This model is
known as the SPE meta-model because it is a model
of the information that goes into constructing an SPE
model.

The S-PMIF based on the SPE meta-model is a
common representation that can be used to exchange
information between (UML-based) software design
tools and software performance engineering tools.
Using it, a software tool can capture software
architecture and design information along with some
performance information and export it to a software
performance engineering tool for model elaboration
and solution without the need for laborious manual
translation from one tool’s representation to another,
and the need to validate the resulting specification.

5. WEB SERVICE PROTOTYPE
To demonstrate the viability of a Performance model
Web Service, we have developed a prototype in which
the modeling tool that uses the Web Service is
SPE·ED, and the tool that solves the model is Qnap.*
Such development requires the implementation of the
SPE·ED PMIF export mechanism and the Qnap PMIF
import mechanism as well as the design and
implementation of the Web Service itself.

The strategy used in the interchange of models is
“export everything you know” and provide defaults for
other required information; “import the parts you need
and make assumptions if you require data not in the
meta-model.” Everything you know is not necessarily
everything you use. For example, SPE·ED uses visits
to specify routing, but it knows about probabilities, and
it is relatively easy to calculate them. We created an
“import-friendly” PMIF; that is, we include both visits
and probabilities to make it easy on the import side. It
is easy to do on output and it lets many importers use
simple tools like XSLT rather than requiring custom
code to do the import.

The following sections discuss specific issues in
exporting from SPE·ED, importing into Qnap and
implementing the Web Service.

5.1 Exporting a pmif.xml model from SPE·ED
SPE·ED uses the Document Object Model (DOM)
[W3C 2001] to export the pmif.xml. It creates the
entire document in memory, and then writes it to a file.

* Qnap is a commercial tool developed by Simulog [Simulog]

therefore, the Web Service described in this paper is only
implemented as a prototype and for research purposes.

Copyright 2005 by the authors. All rights reserved.

Elements and attributes can be added in any order as
long as they are in the correct location. It is a relatively
small file, e.g., 2-3K for this case study, so the
memory requirements are modest.

SPE·ED uses a standard topology for models. Each
facility contains a CPU and one or more other types of
devices. Within a facility the QNM is assumed to be a
central server model. A model may contain multiple
facilities, each with this central server topology.

Several cases required special handling, such as
generating source, sink, and think nodes, transit
probabilities, generating separate servers when
quantity of servers is greater than one, name
substitutions, etc. Details are in [Smith and Lladó
2004].

5.2 Importing a pmif.xml model into Qnap
Qnap reads the input (QNM specification and solving
parameters) from a file. Ultimately, Qnap would have
an interface that would read from its standard file OR
the pmif.xml file. However, we did not have access to
Qnap source code and we could not implement such
an interface directly. Therefore, we translated the
pmif.xml file into a file in Qnap’s format.

The model translation from a pmif.xml file into a Qnap
input file was done using XSLT. We generated a
specific XSLT file that transforms a pmif.xml file into a
file that can be directly read and executed by Qnap.
The direct use of XSLT was feasible due to the
possibility of specifying the stations by parts in the
Qnap input file. This might not be possible for some
other tools with stricter ordering in the input file, in
which case two possibilities would arise: The use of
DOM (as used by SPE·ED to export pmif.xml) or the
use of XSLT together with a conventional
programming language. The use of XSLT is fairly
simple; therefore we would recommend XSLT when
possible for the translation into a tool’s file format.

For the case of a real implementation (i.e.,
implementing an interface from the tool that would
read from the xml file directly), the use of DOM would
be necessary since XSLT can only transform an XML
file into another file. It would probably be advisable to
read the entire pmif.xml file into memory then interpret
and insert parameters into appropriate internal data
structures because of the ordering in the XML
schema. That is, some transformations may require
information from elements that have not been read
yet.

5.3 Web Service Design and Implementation
As stated earlier, we created a Web Service that
solves performance models specified in PMIF format,

in which the solving tool is Qnap. This requires the
following steps:

• Validating the PMIF XML validation against the

PMIF Schema
www.perfeng.com/pmif/pmifschema.xsd

• Transforming a PMIF file into a file in Qnap's
format.

• Executing Qnap with the transformed Qnap file and
returning results

The execution function consists of two alternatives
depending on the format in which the results have to
be returned. The results can be sent back to the client
as a Qnap output file (the client that uses the Web
Service might actually know how to process the result
file that Qnap normally produces). Additionally, the
results can be returned as an XML file in a standard
format.

A separate research project is focusing on the
development of the meta-model for the results
specification and on its XML Schema definition. In the
meantime, this project uses a preliminary draft of this
schema to demonstrate the feasibility of this
approach. In this case, after the Qnap execution, the
Qnap results file is transformed into a file that follows
the XML results schema and it is sent back to the
client.

The prototype XML results schema can be found in
[Rosselló et al. 2005]. This schema includes the
principal results for Workloads (response time and
throughput), as well as the principal results for each
Node (queue-server): throughput, response time,
utilization, queue length, and service time - the overall
total as well as the details for each Workload at the
Node.

We chose the Apache HTTP Server [Apache 1999-
2004] as the server for our prototype implementation
since it is a widely used open-source HTTP server,
efficient, secure and extensible. We also chose a
widely used general-purpose scripting language,
PHP, which is especially suited for Web development
and can be embedded into HTML. The PHP
Extension and Application Repository (PEAR) [PEAR-
PHP 2001-2004] is a framework and distribution
system for reusable PHP components, which are
provided free of charge in the form of packages. One
of these packages includes the SOAP protocol
implementation and services. Other PHP functions
handle XSLT and XML. The PEAR::SOAP library
functions facilitate the server programming.

Copyright 2005 by the authors. All rights reserved.

The server functionality described above is
implemented using the PHP language. It consists of
the following four methods:

1. XMLValidate: validates the XML file against
the PMIF XML-Schema

2. QnapTransform: receives a file in pmif.xml
format and returns the result of the
transformation of the PMIF document into
Qnap's code (which is obtained by applying
the Qnap importing mechanism explained in
section 5.2),

3. QnapExecute (Text results): returns the Qnap
output execution results,

4. QnapExecute (XML results): returns the
results in XML format that follows the
prototype version of the results schema.

The WSDL file, that describes these methods, uses
the PEAR::SOAP extension. A sample of this WSDL
file, which only deals with the validation function, is
shown below.
<?xml version="1.0"?>
<definitions name="ExecucioQnapServer"
 targetNamespace="urn:ExecucioQnapServer"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="urn:ExecucioQnapServer"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types xmlns="http://schemas.xmlsoap.org/wsdl/">
 </types>
 <portType name="ExecucioQnapServerPort">
 <operation name="validarXML">
 <input message="tns:validarXMLRequest" />
 <output message="tns:validarXMLResponse" />
 </operation>
 </portType>
 <binding name="ExecucioQnapServerBinding"
 type="tns:ExecucioQnapServerPort">
 <soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="validarXML">
 <soap:operation soapAction="urn:
ExecucioQnapServer#ExecucioQnapServer#validarX
ML"/>
 <input>
 <soap:body use="encoded"
 namespace="urn:ExecucioQnapServer"
 encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>
 <output>
 <soap:body use="encoded"
 namespace="urn:ExecucioQnapServer"
 encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
 <message name="validarXMLRequest">
 <part name="inputString" type="xsd:string"/>
 </message>
 <message name="validarXMLResponse">
 <part name="outputString" type="xsd:string"/>
 </message>
</definitions>

Additional details of this prototype and sample code
can be found in [Rosselló et al. 2005].

6. EXPERIMENTAL RESULTS
In order to access a specific Web Service, the end
user needs first to query the Web Service WSDL file
that shows the description of the methods and their
parameters, and then to develop a client that
accesses one or more of these methods.

The user is free to create his own client and
implement it with any technology that provides the
standard SOAP. In the following paragraphs we
describe two client implementations that we have
developed to show different possibilities for the end
user and to prove that our Web Service
implementation works independently of the client
platform. Both clients carry out the same tasks:
connection to the Web Service server and call to all
the methods previously described.

One of these client implementations is based on
Apache Server, the PHP language and the
PEAR::SOAP module. Therefore, in this case, the
client needs to have Apache installed. This could be
the case when it is an application server that wants to
access a Web Service on another machine. This
client can be executed from any Web browser and its
user interface could be like the one shown in Figure 2.
Each of the buttons in the figure invokes the Web
Service call to one of the four methods described in
the previous section.

The second client implementation is written in
VBScript. With this client a Windows XP user does not
need to install Apache or any other extra software
since XP has a SOAP client already installed.

Copyright 2005 by the authors. All rights reserved.

To create the Web Service client you need to:
• Execute a WSDL file query
• Choose the desired method to invoke and its

parameters and types.
• Invoke the URL where the server

programmed methods reside with the required
parameters.

The following shows an example of the use of the
procedure for the PHP implementation. The example
we use is the ATM example from [Smith and Lladó
2004; Smith and Williams 2002]. It is an open model
with 2 workload classes.

First, the software model was created in the SPE·ED
performance modeling tool. It was then exported to
the PMIF 2.0 format.

Next, the pmif.xml file is copied into the XML to send
screen area (shown in Figure 2). Then the user clicks
on one of the five buttons in the figure and the

corresponding Web Service function is invoked by the
client.

If for instance, the button pressed is the Execute (Text
results), the Web Service validates the file
(successfully), and then translates it to Qnap input
using the XSLT translation. The model is solved and
the results are returned in the Qnap output file format.

The Execute (XML results) button demonstrates the
feasibility of the XML results schema approach. The
values from the XML results file for this case study are
summarized in Table 1. Notice that SPE·ED does not
solve multi-class models analytically. The analytic
results from Qnap (in row 2) are for comparison to the
simulation results. This example shows that allowing
comparison of multiple solution techniques across
tools is a valuable benefit of the PMIF, and it confirms
that the Web Service with the results schema was
successful.

Figure 2. PHP client: user’s interface.

Copyright 2005 by the authors. All rights reserved.

Copyright 2005 by the authors. All rights reserved.

Table 1: Model results for the ATM model study (A: Analytical results, S: Simulation results)
Model Study Response Time CPU Utilization Disk Utilization Confidence/SimTime

 SPE·ED Qnap SPE·ED Qnap SPE·ED Qnap SPE·ED Qnap
1.ATM (S)
Withdrawal
GetBalance

11.971
6.354

11.9
6.362

0.006
0.003

0.0063
0.0025

0.403
0.151

0.3984
0.1519

.314/49890 95\%/5000
0

2.ATM (A)
Withdrawal
GetBalance

11.9
6.336

0.0063
0.0025

0.4
0.15

7. CONCLUSIONS
This paper described some valuable uses for
Performance model Web Services that enable “plug
and play” use of various performance modeling tools.
It then showed some ways they might be used for
Software Performance Engineering to automate the
evaluation of software architectures and designs. The
“plug and play” concept for SPE has the potential to
dramatically improve the automation of SPE tasks.
Further information on this approach is in [Smith et al.
2005]. The paper then reviewed information about
Web Services and the technology used to implement
them. Next it described previous work on two XML
based performance model interchange formats that
provide a foundation for interchanging performance
models among tools. The PMIF is for exchanging
Queueing Network Models, and the S-PMIF is for
exchanging software performance models. Next we
described the implementation of our prototype
Performance model Web Service. Finally we gave
some experimental results that show the viability of
Performance model Web Services.

This work is part of an ongoing project to automate
SPE performance evaluation. The interchange
formats that were previously developed allow flexibility
in when and how performance specifications are
provided and even allow some specifications to be
provided by measurement tools.

Using a common format simplifies the tool
implementation by requiring only an import and export
interface to the interchange format rather than a
custom interface to each tool that exchanges
information. The implementation may be done using
an XSLT translation external to tools that provide a file
input/output interface. Thus, users of the tool can
create (and share) their own interchange mechanism
and Web Service when tool vendors do not provide a
custom interface.

The interchange also enables a “plug and play”
paradigm for using performance modeling tools
appropriate for the particular problem to be studied.
These interchange formats have established a
foundation that makes implementation of a
Performance model Web Service viable.

Additional work is underway to automate the call to
the Web Service from SPE·ED, to parse the XML
results, and to display them graphically in the software
performance model. A separate research project is
also developing the complete meta-model for results
and the XML schema for it. There are some additional
issues to be investigated associated with the use of
proprietary tools as Web Services, such as
authenticating users and perhaps charging for
services.

As previously mentioned, this prototype Web Service
validates an input file against the PMIF 2.0 XML
schema [Smith and Lladó 2004]. Therefore, the input
model is checked for possible syntactical
inconsistencies. However, the PMIF XML schema
does not handle semantic validation (for example, that
declared nodes are actually used in the model, the
model topology is valid, etc.). We did not include
semantic validation because it is reasonable to
assume that production tools generate correct
pmif.xml, and that it is only necessary to validate the
semantics occasionally. Semantic validation would be
useful for a PMIF that has not been automatically
generated, such as when an end user writes a PMIF
model to be sent to the Web Service. A PMIF
semantic validation would also be useful as a Web
Service.

ACKNOWLEDGEMENTS
The authors would like to thank Jeronia Rosselló for
implementing the prototype, and the ACSIC research
group at the Universitat de les Illes Balears for the
help offered towards this collaboration.

Copyright 2005 by the authors. All rights reserved.

8. REFERENCES
[Apache 1999-2004] Apache, "Apache http server

project", http://www.apache.org, 1999-2004.
[L&S] L&S, Computer Technology, Inc., Performance

Engineering Services Division. # 110, PO Box
9802. Austin, TX 78766, (505) 988-3811,
www.perfeng.com.

[OMG 2003] OMG, "UML Profile for Schedulability,
Performance and Time, formal/03-09-01", OMG
Full Specification, 2003.

[PEAR-PHP 2001-2004] PEAR-PHP, "The php
extension and application repository",
http://pear.php.net, 2001-2004.

[Rosselló et al. 2005] Rosselló, J., C. M. Lladó, R.
Puigjaner and C. U. Smith, "A Web Service for
Solving Queueing Network Models Using PMIF",
www.perfeng.com/paperndx.htm, April 2005.

[Simulog] Simulog, Paris Office. 1 rue James Joule,
78286 Guyancourt Cedex. France, 33 (0)1 30 12
27 00, www.simulog.fr.

[Smith and Lladó 2004] Smith, C. U. and C. M. Lladó,
"Performance Model Interchange Format (PMIF
2.0): XML Definition and Implementation", Proc. 1st
Int. Conf. on Quantitative Evaluation of Systems

(QEST), Enschede, NL, IEEE Computer Society,
2004.

[Smith et al. 2005] Smith, C. U., C. M. Lladó, V.
Cortellessa, A. Di Marco and L. G. Williams, "From
UML Models to Software Performance Results: An
SPE Process Based on XML Interchange
Formats", Workshop on Software and Performance
(WOSP) 2005, Palma de Mallorca, ACM, 2005.

[Smith and Williams 1999] Smith, C. U. and L. G.
Williams, “A Performance Model Interchange
Format.” Journal of Systems and Software 49(1),
1999.

[Smith and Williams 2002] Smith, C. U. and L. G.
Williams. Performance Solutions: A Practical Guide
to Creating Responsive, Scalable Software,
Addison-Wesley, 2002.

[W3C 2001] W3C, "World Wide Web Consortium",
www.w3c.org, 2001.

[Williams and Smith 1995] Williams, L. G. and C. U.
Smith, "Information Requirements for Software
Performance Engineering", Proceedings 1995
International Conference on Modeling Techniques
and Tools for Computer Performance Evaluation,
Heidelberg, Germany, Springer, 1995.

